Skip to main content

Imaging of Tissue-Specific and Temporal Activation of GPCR Signaling Using DREADD Knock-In Mice

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

Engineered G protein-coupled receptors (DREADDs, designer receptors exclusively activated by designer drugs) are convenient tools for specific activation of GPCR signaling in many cell types. DREADDs have been utilized as research tools to study numerous cellular and physiologic processes, including regulation of neuronal activity, behavior, and metabolism. Mice with random insertion transgenes and adeno-associated viruses have been widely used to express DREADDs in individual cell types. We recently created and characterized ROSA26-GsDREADD knock-in mice to allow Cre recombinase-dependent expression of a Gαs-coupled DREADD (GsD) fused to GFP in distinct cell populations in vivo. These animals also harbor a CREB-activated luciferase reporter gene for analysis of CREB activity by in vivo imaging, ex vivo imaging, or biochemical reporter assays. In this chapter, we provide detailed methods for breeding GsD animals, inducing GsD expression, stimulating GsD activity, and measuring basal and stimulated CREB reporter bioluminescence in tissues in vivo, ex vivo, and in vitro. These animals are available from our laboratory for non-profit research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanlon CD, Andrew DJ (2015) Outside-in signaling--a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci 128(19):3533–3542. https://doi.org/10.1242/jcs.175158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39(3):239–264. https://doi.org/10.1007/s12033-008-9031-1

    Article  CAS  PubMed  Google Scholar 

  3. Heng BC, Aubel D, Fussenegger M (2013) An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 31(8):1676–1694. https://doi.org/10.1016/j.biotechadv.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  4. Vassart G, Costagliola S (2011) G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 7(6):362–372. https://doi.org/10.1038/nrendo.2011.20

    Article  CAS  PubMed  Google Scholar 

  5. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1):47–60. https://doi.org/10.1038/nrd3320

    Article  CAS  PubMed  Google Scholar 

  6. Kandola MK, Sykes L, Lee YS, Johnson MR, Hanyaloglu AC, Bennett PR (2014) EP2 receptor activates dual G protein signaling pathways that mediate contrasting proinflammatory and relaxatory responses in term pregnant human myometrium. Endocrinology 155(2):605–617. https://doi.org/10.1210/en.2013-1761

    Article  PubMed  Google Scholar 

  7. Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA (2015) Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal 8(405):ra123. https://doi.org/10.1126/scisignal.aab4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michal P, El-Fakahany EE, Dolezal V (2007) Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther 320(2):607–614. https://doi.org/10.1124/jpet.106.114314

    Article  CAS  PubMed  Google Scholar 

  9. Coward P, Wada HG, Falk MS, Chan SD, Meng F, Akil H, Conklin BR (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 95(1):352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168. https://doi.org/10.1073/pnas.0700293104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pei Y, Rogan SC, Yan F, Roth BL (2008) Engineered GPCRs as tools to modulate signal transduction. Physiology (Bethesda) 23:313–321. https://doi.org/10.1152/physiol.00025.2008

    Article  CAS  Google Scholar 

  12. Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S, Forsayeth JR, Guettier JM, Chang WC, Pei Y, McCarthy KD, Nissenson RA, Wess J, Bockaert J, Roth BL (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5(8):673–678. https://doi.org/10.1038/nmeth.1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5(3):561–573. https://doi.org/10.1038/nprot.2009.239

    Article  CAS  PubMed  Google Scholar 

  14. Wess J, Nakajima K, Jain S (2013) Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci 34(7):385–392. https://doi.org/10.1016/j.tips.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi M, Cui Z, Nakajima K, Hu J, Zhu L, Wess J (2015) Virus-mediated expression of DREADDs for in vivo metabolic studies. Methods Mol Biol 1335:205–221. https://doi.org/10.1007/978-1-4939-2914-6_14

    Article  PubMed  Google Scholar 

  16. Nakajima K, Cui Z, Li C, Meister J, Cui Y, Fu O, Smith AS, Jain S, Lowell BB, Krashes MJ, Wess J (2016) Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat Commun 7:10268. https://doi.org/10.1038/ncomms10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39. https://doi.org/10.1016/j.neuron.2009.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J (2013) Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J Clin Invest 123(4):1750–1762. https://doi.org/10.1172/JCI66432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koehler S, Brahler S, Kuczkowski A, Binz J, Hackl MJ, Hagmann H, Hohne M, Vogt MC, Wunderlich CM, Wunderlich FT, Schweda F, Schermer B, Benzing T, Brinkkoetter PT (2016) Single and transient Ca(2+) peaks in Podocytes do not induce changes in glomerular filtration and perfusion. Sci Rep 6:35400. https://doi.org/10.1038/srep35400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu H, Aryal DK, Olsen RH, Urban DJ, Swearingen A, Forbes S, Roth BL, Hochgeschwender U (2016) Cre-dependent DREADD (designer receptors exclusively activated by designer drugs) mice. Genesis 54(8):439–446. https://doi.org/10.1002/dvg.22949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akhmedov D, Mendoza-Rodriguez MG, Rajendran K, Rossi M, Wess J, Berdeaux R (2017) Gs-DREADD knock-in mice for tissue-specific, temporal stimulation of cyclic AMP signaling. Mol Cell Biol 37(9). https://doi.org/10.1128/MCB.00584-16

  22. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151. https://doi.org/10.1038/nrm3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akhmedov D, Rajendran K, Mendoza-Rodriguez MG, Berdeaux R (2016) Knock-in luciferase reporter mice for in vivo monitoring of CREB activity. PLoS One 11(6):e0158274. https://doi.org/10.1371/journal.pone.0158274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirkby NS, Zaiss AK, Urquhart P, Jiao J, Austin PJ, Al-Yamani M, Lundberg MH, MacKenzie LS, Warner TD, Nicolaou A, Herschman HR, Mitchell JA (2013) LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression. PLoS One 8(7):e69524. https://doi.org/10.1371/journal.pone.0069524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106(45):19197–19202. https://doi.org/10.1073/pnas.0906593106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, Weinshenker D (2018) The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep 8(1):3840. https://doi.org/10.1038/s41598-018-22116-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16(10):1152–1156. https://doi.org/10.1038/nm.2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCarthy JJ, Srikuea R, Kirby TJ, Peterson CA, Esser KA (2012) Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skelet Muscle 2(1):8. https://doi.org/10.1186/2044-5040-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK092590 to RB) and the British Heart Foundation (FS/16/1/31699 to NSK, PG/15/47/31591 to JAM and NSK, and RE/13/4/30184 to JAM and NSK). The funders had no role in the study design or preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Berdeaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Akhmedov, D., Kirkby, N.S., Mitchell, J.A., Berdeaux, R. (2019). Imaging of Tissue-Specific and Temporal Activation of GPCR Signaling Using DREADD Knock-In Mice. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics