Skip to main content

Molecular Dynamic Simulations to Probe Water Permeation Pathways of GPCRs

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

Rhodopsin is a light-driven G protein-coupled receptor mediating signal transduction in eyes. The molecular dynamics (MD) simulations are powerful computational tools to investigate molecular behavior of proteins and internal water molecules which are related to the function of proteins; however, the MD simulations of the rhodopsin require several technical setups for accurate calculations. This chapter discusses practical methods for setting up the MD simulations of the rhodopsin [preparation of initial systems, condition files for MD simulation package GROMACS, and data analysis]. The data analysis includes the root mean square deviation (RMSD) and mapping of accessibility of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767

    Article  CAS  Google Scholar 

  2. Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310:1006–1009

    Article  CAS  Google Scholar 

  3. Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc Natl Acad Sci U S A 104:7764–7769

    Article  CAS  Google Scholar 

  4. Röhrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U (2004) A molecular spring for vision. J Am Chem Soc 126:15328–15329

    Article  Google Scholar 

  5. Smith SO (2010) Structure and activation of the visual pigment rhodopsin. Annu Rev Biophys 39:309–328

    Article  CAS  Google Scholar 

  6. Yamamoto E, Akimoto T, Hirano Y, Yasui M, Yasuoka K (2014) 1/f fluctuations of amino acids regulate water transportation in aquaporin 1. Phys Rev E 89:022718

    Article  Google Scholar 

  7. Tomobe K, Yamamoto E, Akimoto T, Yasui M, Yasuoka K (2016) Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R. AIP Adv 6:055324

    Article  Google Scholar 

  8. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  Google Scholar 

  9. Sun X, Ågren H, Tu Y (2014) Functional water molecules in rhodopsin activation. J Phys Chem B 118:10863–10873

    Article  CAS  Google Scholar 

  10. Tomobe K, Yamamoto E, Kholmurodov K, Yasuoka K (2017) Water permeation through the internal water pathway in activated GPCR rhodopsin. PLoS One 12:e0176876

    Article  Google Scholar 

  11. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  12. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  14. Jämbeck JP, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948

    Article  Google Scholar 

  15. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by MEXT (Ministry of Education, Culture, Sports, Science and Technology) Grant-in-Aid for the Program for Leading Graduate Schools, Keio University Doctorate Student Grant-in-Aid Program, and a Bilateral Program JSPS. E.Y. was supported by MEXT Grant-in-Aid for the “Building of Consortia for the Development of Human Resources in Science and Technology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yasuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tomobe, K., Yamamoto, E., Yasuoka, K. (2019). Molecular Dynamic Simulations to Probe Water Permeation Pathways of GPCRs. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics