Skip to main content

Isolation and Culture of Primary Mouse Middle Ear Epithelial Cells

  • Protocol
  • First Online:
Book cover Mouse Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1940))

Abstract

Epithelial abnormalities underpin the development of the middle ear disease, otitis media (OM). Until now, a well-characterized in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear has not been available. This chapter describes the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs), cultured at the air-liquid interface (ALI). This system enables recapitulation of the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Overall, our mMEC culture system can help better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodeling underpinning OM development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fireman P (1997) Otitis media and eustachian tube dysfunction: connection to allergic rhinitis. J Allergy Clin Immunol 99:S787–S797

    Article  CAS  Google Scholar 

  2. Lim DJ, Chun YM, Lee HY, Moon SK, Chang KH et al (2000) Cell biology of tubotympanum in relation to pathogenesis of otitis media - a review. Vaccine 19:S17–S25

    Article  CAS  Google Scholar 

  3. McGuire JF (2002) Surfactant in the middle ear and eustachian tube: a review. Int J Pediatr Otorhinolaryngol 66:1–15

    Article  Google Scholar 

  4. Bartlett JA, Gakhar L, Penterman J, Singh PK, Mallampalli RK et al (2011) PLUNC: a multifunctional surfactant of the airways. Biochem Soc Trans 39:1012–1016. Erratum Biochem Soc Trans 39:1549–1549

    Article  CAS  Google Scholar 

  5. Mittal R, Kodiyan J, Gerring R, Mathee K, Li J-D et al (2014) Role of innate immunity in the pathogenesis of otitis media. Int J Infect Dis 29:259–267

    Article  CAS  Google Scholar 

  6. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  CAS  Google Scholar 

  7. Leichtle A, Lai Y, Wollenberg B, Wasserman SI, Ryan AF (2011) Innate signaling in otitis media: pathogenesis and recovery. Curr Allergy Asthma Rep 11:78–84

    Article  Google Scholar 

  8. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA et al (2008) The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Expl Otorhinolaryngol 1:117–138

    Article  Google Scholar 

  9. Straetemans M, van Heerbeek N, Tonnaer E, Ingels KJ, Rijkers GT, Zielhuis GA (2001) A comprehensive model for the aetiology of otitis media with effusion. Med Hypotheses 57:784–791

    Article  CAS  Google Scholar 

  10. Vanblitterswijk CA, Ponec M, Vanmuijen GNP, Wijsman MC, Koerten HK, Grote JJ (1986) Culture and characterization of rat middle ear epithelium. Acta Otolaryngol 101:453–466

    Article  CAS  Google Scholar 

  11. Ueyama S, Jin SJ, Rhim JS, Ueyama T, Lim DJ (2001) Immortalization of rat middle ear epithelial cells by adeno 12-SV40 hybrid virus. Ann Otol Rhinol Laryngol 110:132–141

    Article  CAS  Google Scholar 

  12. Toyama K, Kim Y, Paparella MM, Lin JZ (2004) Temperature-sensitive SV40-immortalized rat middle ear epithelial cells. Ann Otol Rhinol Laryngol 113:967–974

    Article  Google Scholar 

  13. Tsuchiya K, Kim Y, Ondrey FG, Lin JZ (2005) Characterization of a temperature-sensitive mouse middle ear epithelial cell line. Acta Otolaryngol 125:823–829

    Article  CAS  Google Scholar 

  14. Nakamura A, Demaria TF, Arya G, Lim DJ, Vanblitterswijk C (1991) serial culture and characterization of the chinchilla middle ear epithelium. Ann Otol Rhinol Laryngol 100:1024–1031

    Article  CAS  Google Scholar 

  15. Amesara R, Kim Y, Sano S, Harada T, Juhn SK (1992) Primary cultures of middle ear epithelial cells from chinchillas. Eur Arch Otorhinlaryngol 249:164–167

    CAS  Google Scholar 

  16. Herman P, Friedlander G, Huy PTB, Amiel C (1992) Ion transport by primary cultures of mongolian gerbil middle ear epithelium. Am J Phys 262:F373–F380

    CAS  Google Scholar 

  17. Portier F, Kania R, Planes C, Hsu WC, Couette S et al (2005) Enhanced sodium absorption in middle ear epithelial cells cultured at air-liquid interface. Acta Otolaryngol 125:16–22

    Article  CAS  Google Scholar 

  18. Takeno S (1990) Tissue culture of middle ear epithelium of the guinea pig--differences of the cellular growth activity in the middle ear cavity using collagen gel culture method. Nihon Jibiinkoka Gakkai Kaiho 93:2038–2046

    Article  CAS  Google Scholar 

  19. Schousboe LP, Ovesen T, Ottosen PD, Ledet T, Elbrond O (1995) culture of rabbit middle ear epithelial cells. A method for primary culture and subculture with identification, characterization and growth specification. Acta Otolaryngol 115:787–795

    Article  CAS  Google Scholar 

  20. Moon SK, Lim DJ, Lee HK, Kim HN, Yoon JH (2000) Mucin gene expression in cultured human middle ear epithelial cells. Acta Otolaryngol 120:933–939

    Article  CAS  Google Scholar 

  21. Chun YM, Moon SK, Lee HY, Webster P, Brackmann DE et al (2002) Immortalization of normal adult human middle ear epithelial cells using a retrovirus containing the E6/E7 genes of human papillomavirus type 16. Ann Otol Rhinol Laryngol 111:507–517

    Article  Google Scholar 

  22. Choi JY, Kim CH, Lee WS, Kim HN, Song KS, Yoon JH (2002) Ciliary and secretory differentiation of normal human middle ear epithelial cells. Acta Otolaryngol 122:270–275

    Article  Google Scholar 

  23. Davidson DJ, Kilanowski FM, Randell SH, Sheppard DN, Dorin JR (2000) A primary culture model of differentiated murine tracheal epithelium. Am J Physiol Lung Cell Mol Physiol 279:L766–L778

    Article  CAS  Google Scholar 

  24. Clarke LL, Burns KA, Bayle JY, Boucher RC, Vanscott MR (1992) sodium conductive and chloride conductive pathways in cultured mouse tracheal epithelium. Am J Phys 263:L519–L525

    CAS  Google Scholar 

  25. You YJ, Richer EJ, Huang T, Brody SL (2002) Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol 283:L1315–L1321

    Article  CAS  Google Scholar 

  26. Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH (1992) Differentiated structure and functiona of cultures from human tracheal epithelium. Am J Phys 262:L713–L724

    CAS  Google Scholar 

  27. Woodworth BA, Antunes MB, Bhargave G, Palmer JN, Cohen NA (2007) Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study. Am J Rhinol 2:533–537

    Article  Google Scholar 

  28. Yoon JH, Kim KS, Kim SS, Lee JG, Park IY (2000) Secretory differentiation of serially passaged normal human nasal epithelial cellsby retinoic acid: expression of mucin and lysozyme. Ann Otol Rhinol Laryngol 109:594–601

    Article  CAS  Google Scholar 

  29. Pillai DK, Sankoorikal BJ, Johnson E, Seneviratne AN, Zurko J, et al (2014) Directional secretomes reflect polarity-specific functions in an in vitro model of human bronchial epithelium. Am J Respir Cell Mol Biol 50:292–300

    PubMed  PubMed Central  Google Scholar 

  30. Yeh TH, Tsai CH, Chen YS, Hsu WC, Cheng CH et al (2007) Increased communication among nasal epithelial cells in air-liquid interface culture. Laryngoscope 117:1439–1444

    Article  Google Scholar 

  31. Krunkosky TM, Martin LD, Fischer BM, Voynow JA, Adler KB (2003) Effects of TNF alpha on expression of ICAM-1 in human airway epithelial cells in vitro: oxidant-mediated pathways and transcription factors. Free Radic Biol Med 35:1158–1167

    Article  CAS  Google Scholar 

  32. Lopez-Souza N, Favoreto S, Wong H, Ward T, Yagi S et al (2009) In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 123:1384–1390

    Article  CAS  Google Scholar 

  33. Wu Q, Lu Z, Verghese MW, Randell SH (2005) Airway epithelial cell tolerance to Pseudomonas aeruginosa. Respir Res 6:26

    Article  CAS  Google Scholar 

  34. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K et al (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:1858–1868

    Article  CAS  Google Scholar 

  35. Lee MK, Yoo JW, Lin HX, Kim DD, Choi YM et al (2005) Air-liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Deliv 12:305–311

    Article  CAS  Google Scholar 

  36. Dimova S, Brewster ME, Noppe M, Jorissen A, Augustijns P (2005) The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro 19:107–122

    Article  CAS  Google Scholar 

  37. Auger F, Gendron MC, Chamot C, Marano F, Dazy AC (2006) Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol 215:285–294

    Article  CAS  Google Scholar 

  38. Johnson VJ, Yucesoy B, Reynolds JS, Fluharty K, Wang W et al (2007) Inhalation of toluene diisocyanate vapor induces allergic rhinitis in mice. J Immunol 17:1864–1871

    Article  Google Scholar 

  39. Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    Article  CAS  Google Scholar 

  40. Hirst RA, Jackson CL, Coles JL, Williams G, Rutman A et al (2014) Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One 9:e89675

    Article  Google Scholar 

  41. Brown SD, Hardisty-Hughes RE, Mburu P (2008) Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 9:277–290

    Article  CAS  Google Scholar 

  42. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  43. Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM et al (2011) Unraveling the genetics of otitis media: from mouse to human and back again. Mamm Genome 22:66–82

    Article  CAS  Google Scholar 

  44. You Y, Brody SL (2013) Culture and differentiation of mouse tracheal epithelial cells. Methods Mol Biol 945:123–143

    Article  Google Scholar 

  45. Mulay A, Akram KM, Williams D, Armes H, Russell C et al (2016) An in vitro model of murine middle ear epithelium. Dis Model Mech 9:1405–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a University of Sheffield PhD Studentship (supervised by LB and CDB) and funds from MRC Harwell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Bingle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mulay, A., Akram, K., Bingle, L., Bingle, C.D. (2019). Isolation and Culture of Primary Mouse Middle Ear Epithelial Cells. In: Bertoncello, I. (eds) Mouse Cell Culture. Methods in Molecular Biology, vol 1940. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9086-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9086-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9085-6

  • Online ISBN: 978-1-4939-9086-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics