Skip to main content

Preparation of Synaptoneurosomes for the Study of Glutamate Receptor Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1941))

Abstract

The use of synaptoneurosomes (SN) enables the detection of synaptic activity including the assessment of glutamate receptor function. SN are normally prepared by filtration and centrifugation methods. Here we review the preparation of SN by Percoll density gradient methodology for downstream applications that assesses glutamate receptor function such as measuring de novo protein synthesis. Major procedural steps include preparation of discontinuous Percoll-sucrose density gradients, collection of brain tissue, preparation of brain homogenates, isolation of synaptoneurosome bands from the discontinuous Percoll-sucrose gradients, and radiolabeling SN proteins. De novo protein synthesis can be reproducibly measured in SN prepared by this method.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261

    Article  CAS  Google Scholar 

  2. Dunkley PR, Heath JW, Harrison SM et al (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441(1–2):59–71

    Article  CAS  Google Scholar 

  3. Bagni C, Mannucci L, Dotti CG, Amaldi F (2000) Chemical stimulation of synaptosomes modulates alpha -Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. J Neurosci 20(10):RC76

    Article  CAS  Google Scholar 

  4. Westmark PR, Westmark CJ, Jeevananthan A, Malter JS (2011) Preparation of synaptoneurosomes from mouse cortex using a discontinuous Percoll-sucrose density gradient. J Vis Exp (55):3196. https://doi.org/10.3791/3196

  5. Harrison SM, Jarvie PE, Dunkley PR (1988) A rapid percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res 441(1–2):72–80

    Article  CAS  Google Scholar 

  6. Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5(3):e52

    Article  Google Scholar 

  7. Westmark PR, Westmark CJ, Wang S et al (2010) Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal 3(112):ra18

    Article  Google Scholar 

  8. Gerstner JR, Vanderheyden WM, LaVaute T et al (2012) Time of day regulates subcellular trafficking, tripartite synaptic localization, and polyadenylation of the astrocytic Fabp7 mRNA. J Neurosci 32(4):1383–1394

    Article  CAS  Google Scholar 

  9. Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1(3):297–317

    Article  CAS  Google Scholar 

  10. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750

    Article  CAS  Google Scholar 

  11. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  CAS  Google Scholar 

  12. Westmark CJ, Westmark PR, O’Riordan KJ et al (2011) Reversal of fragile X phenotypes by manipulation of AbetaPP/Abeta levels in Fmr1 mice. PLoS One 6(10):e26549

    Article  CAS  Google Scholar 

  13. Westmark CJ, Chuang SC, Hays SA et al (2016) APP causes hyperexcitability in fragile X mice. Front Mol Neurosci 9:147

    Article  Google Scholar 

  14. Westmark CJ, Berry-Kravis EM, Ikonomidou C et al (2013) Developing BACE-1 inhibitors for FXS. Front Cell Neurosci 7:77

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Westmark C (2014) Group 1 metabotropic glutamate receptors: a potential therapeutic target for amyloidogenic disorders. In: Olive F (ed) Metabotropic glutamate receptors: molecular mechanisms, role in neurological disorders, and pharmacological effects. Nova Biomedical, New York

    Google Scholar 

  16. Westmark CJ (2014) The quest for fragile X biomarkers. Mol Cell Pediatr 1(1). 1-014-0001-3. Epub 2014 Sep 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara J. Westmark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Westmark, C.J., Westmark, P.R. (2019). Preparation of Synaptoneurosomes for the Study of Glutamate Receptor Function. In: Burger, C., Velardo, M. (eds) Glutamate Receptors. Methods in Molecular Biology, vol 1941. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9077-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9077-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9076-4

  • Online ISBN: 978-1-4939-9077-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics