Skip to main content

Simultaneous Recording of Subcellular Ca2+ Signals from the Cytosol and Sarco/Endoplasmic Reticulum: Compartmentalized Dye Loading, Imaging, and Analysis

  • Protocol
  • First Online:
  • 2268 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

An increase in the cytosolic Ca2+ concentration triggers the contraction in cardiomyocytes. In these cells sarcoplasmic reticulum (SR) is the major source of Ca2+, and the release from this store is mediated by the ryanodine receptors (RyRs). These receptors are regulated by cytosolic and intra-SR [Ca2+]. The cytosolic Ca2+ regulation is well established, but there are some limitations to determine indirectly the intra-SR Ca2+ concentration and understand its role in the RyRs regulation. Therefore, the interest to directly measure the free intra-SR Ca2+ concentration ([Ca2+]SR) has led to the application of a low-affinity Ca2+ indicator (Fluo-5N AM) to follow changes of [Ca2+]SR in cardiomyocytes. However the loading of this AM-ester dye into the SR has remained a challenge in freshly isolated mouse cardiomyocytes. Here, we describe an optimized protocol to measure changes of [Ca2+]SR in mouse cardiomyocytes using fluorescent Ca2+ indicators and confocal microscopy. The application of this protocol allows to evaluate directly intra-SR Ca2+ in real time in various mouse models of cardiac disease, including transgenic animals harboring mutants of RyRs or other Ca2+ signaling proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264:8179–8184

    CAS  PubMed  Google Scholar 

  2. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    CAS  PubMed  Google Scholar 

  3. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  4. Peeters GA, Hlady V, Bridge JH, Barry WH (1987) Simultaneous measurement of calcium transients and motion in cultured heart cells. Am J Phys 253:H1400–H1408

    CAS  Google Scholar 

  5. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  Google Scholar 

  6. Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93:487–490

    Article  CAS  Google Scholar 

  7. Lindner M, Erdmann E, Beuckelmann DJ (1998) Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 30:743–749

    Article  CAS  Google Scholar 

  8. Hobai IA, O'Rourke B (2001) Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation 103:1577–1584

    Article  CAS  Google Scholar 

  9. Kubalova Z, Terentyev D, Viatchenko-Karpinski S, Nishijima Y, Györke I, Terentyeva R, da Cuñha DNQ, Sridhar A, Feldman DS, Hamlin RL et al (2005) Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A 102:14104–14109

    Article  CAS  Google Scholar 

  10. Benkusky NA, Farrell EF, Valdivia HH (2004) Ryanodine receptor channelopathies. Biochem Bioph Res Comm 322:1280–1285

    Article  CAS  Google Scholar 

  11. Betzenhauser MJ, Marks AR (2010) Ryanodine receptor channelopathies. Pflugers Arch - Eur J Physiol 460:467–480

    Article  CAS  Google Scholar 

  12. Györke I, Hester N, Jones LR, Györke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128

    Article  Google Scholar 

  13. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A et al (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 20:184–192

    Article  CAS  Google Scholar 

  14. Jiang D (2005) Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ Res 97:1173–1181

    Article  CAS  Google Scholar 

  15. Callewaert G, Cleemann L, Morad M (1989) Caffeine-induced Ca2+ release activates Ca2+ extrusion via Na+-Ca2+ exchanger in cardiac myocytes. Am J Phys 257:C147–C152

    Article  CAS  Google Scholar 

  16. Varro A, Negretti N, Hester SB, Eisner DA (1993) An estimate of the calcium content of the sarcoplasmic reticulum in rat ventricular myocytes. Pflugers Arch - Eur J Physiol 423:158–160

    Article  CAS  Google Scholar 

  17. Negretti N, Varro A, Eisner DA (1995) Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes. J Physiol 486:581–591

    Article  CAS  Google Scholar 

  18. Díaz ME, Trafford AW, O'Neill SC, Eisner DA (1997) Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release. J Physiol 501:3–16

    Article  Google Scholar 

  19. Shmigol AV, Eisner DA, Wray S (2001) Simultaneous measurements of changes in sarcoplasmic reticulum and cytosolic [Ca2+] in rat uterine smooth muscle cells. J Physiol 531:707–713

    Article  CAS  Google Scholar 

  20. Valverde CA, Kornyeyev D, Ferreiro M, Petrosky AD, Mattiazzi A, Escobar AL (2010) Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion. Cardiovasc Res 85:671–680

    Article  CAS  Google Scholar 

  21. Kornyeyev D, Reyes M, Escobar AL (2010) Luminal Ca2+ content regulates intracellular Ca2+ release in subepicardial myocytes of intact beating mouse hearts: effect of exogenous buffers. Am J Physiol Heart Circ Physiol 298:H2138–H2153

    Article  CAS  Google Scholar 

  22. Kabbara AA, Allen DG (2001) The use of the indicator fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. J Physiol 534:87–97

    Article  CAS  Google Scholar 

  23. Shannon TR, Guo T, Bers DM (2003) Ca2+ scraps: local depletions of free [Ca2+] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca2+ reserve. Circ Res 93:40–45

    Article  CAS  Google Scholar 

  24. Brochet DXP, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102:3099–3104

    Article  CAS  Google Scholar 

  25. Fernández-Tenorio M, Niggli E (2016) Real-time intra-store confocal Ca2+ imaging in isolated mouse cardiomyocytes. Cell Calcium 60:331–340

    Article  Google Scholar 

  26. Bers DM, Patton CW, Nuccitelli R (2010) A practical guide to the preparation of Ca2+ buffers. In: Whitaker M (ed) Calcium in Living Cells. Methods in Cell Biology, vol 99. Elsevier Inc, Amsterdam, pp 1–26

    Chapter  Google Scholar 

  27. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol:1–11

    Google Scholar 

  28. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. John Wiley & Sons, Chichester, UK

    Google Scholar 

  29. Fawcett JM, Harrison SM, Orchard CH (1998) A method for reversible permeabilization of isolated rat ventricular myocytes. Exp Physiol 83:293–303

    Article  CAS  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Swiss National Science Foundation (grant 156375) and the Microscopy Imaging Center (MIC) of the University of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Fernandez-Tenorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niggli, E., Fernandez-Tenorio, M. (2019). Simultaneous Recording of Subcellular Ca2+ Signals from the Cytosol and Sarco/Endoplasmic Reticulum: Compartmentalized Dye Loading, Imaging, and Analysis. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics