Skip to main content

Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1896))

Abstract

Cellular senescence is linked to many normal biological processes, including tumor suppression, development, and wound healing, but it is also associated with age-related pathologies such as cancer progression. Numerous functions of senescent cells depend on their ability to secrete bioactive molecules, a characteristic termed the senescence-associated secretory phenotype (SASP). Although the SASP is generally described as proinflammatory, its true microenvironmental impact and composition may vary according to cell types (i.e., fibroblasts/epithelial, normal/cancerous) and senescence-triggering stimuli (i.e., replicative senescence, DNA damage-induced senescence, oncogene-induced senescence). The SASP reinforces autocrine cell-autonomous functions such as the senescence-associated proliferation arrest, but also mediates potent paracrine, non-cell-autonomous effects. In a paracrine manner, senescent cells influence the remodeling of surrounding tissues and the biology of adjacent cells, including modulation of proliferation and migration/invasion, reinforcement/induction of peripheral senescence, and immune cell activity or recruitment. Overall, the complexity of the context-dependent SASP composition and varied microenvironmental impact demonstrate the importance of properly assessing SASP functions directly on target cells. In this chapter, we focus on experimental approaches to evaluate the impact of SASP on the proliferation and migration/invasion capacities of target cancer cells. These techniques, with combined supplemental notes, will facilitate the assessment of novel functions of senescent cells on their microenvironment, and can be easily adapted beyond the use of the presented SASP-cancer scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  2. Rodier F et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baker DJ et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demaria M et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Munoz-Espin D et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez LC, Ghadaouia S, Martinez A, Rodier F (2015) Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology

    Google Scholar 

  8. Chang BD et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  9. Coppe JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  CAS  PubMed  Google Scholar 

  10. Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  CAS  PubMed  Google Scholar 

  11. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49

    Article  CAS  PubMed  Google Scholar 

  13. Coppe JP et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5:e9188

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coppe JP et al (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286:36396–36403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F (2015) DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Front Genet 6(94)

    Google Scholar 

  16. Parrinello S, Coppe JP, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496

    Article  CAS  PubMed  Google Scholar 

  17. Malaquin N et al (2013) Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 8:e63607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang TW et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y et al (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18:1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodier F (2013) Detection of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 965:165–173

    Article  CAS  PubMed  Google Scholar 

  23. Rodier F et al (2011) DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 124:68–81

    Article  CAS  PubMed  Google Scholar 

  24. O'Hagan-Wong K et al (2016) Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget 7:13285–13296

    PubMed  PubMed Central  Google Scholar 

  25. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laberge RM et al (2013) Mitochondrial DNA damage induces apoptosis in senescent cells. Cell Death Dis 4:e727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J (2005) Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell 4:217–222

    Article  CAS  PubMed  Google Scholar 

  29. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beausejour CM et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    Article  CAS  PubMed  Google Scholar 

  32. Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  CAS  PubMed  Google Scholar 

  33. Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blagosklonny MV (2011) Cell cycle arrest is not senescence. Aging (Albany NY) 3:94–101

    Article  CAS  Google Scholar 

  35. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all laboratory members for valuable comments and discussions, and Jacqueline Chung for manuscript editing. FR is supported by the Institut du cancer de Montréal and by grants from the Canadian Institute for Health Research (MOP114962), the Terry Fox Research Institute (1030) and by a Fonds de recherche du Québec - Santé (FRQS) junior I-II career awards (22624). NM is supported by a MITACS fellowship. VT has received scholarships from Université de Montréal’s Faculté de médecine and Molecular Biology programs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malaquin, N., Tu, V., Rodier, F. (2019). Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP). In: Demaria, M. (eds) Cellular Senescence. Methods in Molecular Biology, vol 1896. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8931-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8931-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8930-0

  • Online ISBN: 978-1-4939-8931-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics