Skip to main content

Quantification of DNA Methylation as Biomarker for Grain Quality

  • Protocol
  • First Online:
Rice Grain Quality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1892))

  • 1357 Accesses

Abstract

DNA methylation is an important biomarker for gene activity. It contributes to gene silencing and is involved in regulating various seed developmental processes in plants. Many of these processes are involved in important traits associated with aspects of grain quality. A reliable, fast, and cheap method is the estimation of DNA methylation utilizing methylation sensitive restriction enzymes (MSRE) and quantitative real-time PCR (qPCR) for selected candidate regions. The presented method can be used to confirm an effect of RNAi constructs on their target genes or trans-activity. Analysis of promoter regions can contribute to estimation of gene activity and related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  Google Scholar 

  2. Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  Google Scholar 

  3. Matzke M et al (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519

    Article  CAS  Google Scholar 

  4. Wassenegger M et al (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76(3):567–576

    Article  CAS  Google Scholar 

  5. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6(5):351–360

    Article  CAS  Google Scholar 

  6. Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6(1):24–35

    Article  CAS  Google Scholar 

  7. Popova OV et al (2013) The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant 6(2):396–410

    Article  CAS  Google Scholar 

  8. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14(2):100–112

    Article  CAS  Google Scholar 

  9. Bucher E, Reinders J, Mirouze M (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol 15(5):503–510

    Article  CAS  Google Scholar 

  10. Shen H et al (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24(3):875–892

    Article  CAS  Google Scholar 

  11. Wang MB et al (2012) RNA silencing and plant viral diseases. Mol Plant-Microbe Interact 25(10):1275–1285

    Article  CAS  Google Scholar 

  12. Fischer U et al (2008) Local DNA features affect RNA-directed transcriptional gene silencing and DNA methylation. Plant J 53(1):1–10

    Article  CAS  Google Scholar 

  13. Shi J, Dong A, Shen WH (2014) Epigenetic regulation of rice flowering and reproduction. Front Plant Sci 5:803

    PubMed  Google Scholar 

  14. Zhang H, Ogas J (2009) An epigenetic perspective on developmental regulation of seed genes. Mol Plant 2(4):610–627

    Article  CAS  Google Scholar 

  15. Zhang L et al (2011) ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant 143(3):287–296

    Article  CAS  Google Scholar 

  16. Andriotis VM et al (2010) Starch turnover in developing oilseed embryos. New Phytol 187(3):791–804

    Article  CAS  Google Scholar 

  17. Wolny E, Braszewska-Zalewska A, Hasterok R (2014) Spatial distribution of epigenetic modifications in Brachypodium distachyon embryos during seed maturation and germination. PLoS One 9(7):e101246

    Article  Google Scholar 

  18. Zhang M et al (2011) Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum. Plant Physiol 156(4):1955–1966

    Article  CAS  Google Scholar 

  19. Kuhlmann M et al (2014) DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. Plant J 80(2):269–281

    Article  CAS  Google Scholar 

  20. Bai F, Settles AM (2014) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci 5:780

    PubMed  Google Scholar 

  21. Li J et al (2013) Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci U S A 110(38):15479–15484

    Article  CAS  Google Scholar 

  22. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25(12):2532–2534

    Article  CAS  Google Scholar 

  23. Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29(18):3742–3756

    Article  CAS  Google Scholar 

  24. Roberts RJ et al (2015) REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43(Database issue):D298–D299

    Article  CAS  Google Scholar 

  25. Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  27. Li X et al (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13:300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kuhlmann .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

List of Enzymes with information on 5mC methylation sensitivity REBASE 2015 (http://rebase.neb.com/cgi-bin/mslist) (DOCX 59 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seiler, C., Kuhlmann, M. (2019). Quantification of DNA Methylation as Biomarker for Grain Quality. In: Sreenivasulu, N. (eds) Rice Grain Quality. Methods in Molecular Biology, vol 1892. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8914-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8914-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8912-6

  • Online ISBN: 978-1-4939-8914-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics