Skip to main content

Quantitative Real-Time PCR to Measure YAP/TAZ Activity in Human Cells

  • Protocol
  • First Online:
Book cover The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

Transcription coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1) are homologs of the Drosophila Yorkie (Yki) protein and are major downstream effectors of the evolutionarily conserved Hippo pathway. YAP/TAZ play critical roles in regulation of cell proliferation, apoptosis, and stemness, thus mediate functions of the Hippo pathway in organ size control and tumorigenesis. The Hippo pathway inhibits YAP/TAZ through phosphorylation, which leads to YAP/TAZ cytoplasmic retention and degradation. Dephosphorylated and nuclear-localized YAP/TAZ bind to transcription factors, especially the TEAD family proteins, thus transactivate the expression of specific genes. Therefore, measuring the expression level of YAP/TAZ target genes is a critical approach to assess Hippo pathway activity. Through gene expression profiling in different tissues and cells using techniques such as microarray and RNA-seq, many target genes of YAP/TAZ have been identified. Some of these genes were confirmed to be direct YAP/TAZ targets by chromatin immunoprecipitation (ChIP)-PCR or ChIP-seq. These works made it possible to quickly determine YAP/TAZ activity by measuring the mRNA levels of several YAP/TAZ target genes, such as CTGF, CYR61, and miR-130a by quantitative real-time PCR (qPCR). In this chapter, we demonstrate the use of qPCR to measure YAP/TAZ activity in MCF10A cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152

    CAS  PubMed  Google Scholar 

  2. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y (1999) A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18(9):2551–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434

    Article  CAS  PubMed  Google Scholar 

  4. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133. https://doi.org/10.1016/j.cell.2007.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24(1):72–85. https://doi.org/10.1101/gad.1843810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19(24):6778–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murakami M, Tominaga J, Makita R, Uchijima Y, Kurihara Y, Nakagawa O, Asano T, Kurihara H (2006) Transcriptional activity of Pax3 is co-activated by TAZ. Biochem Biophys Res Commun 339(2):533–539

    Article  CAS  PubMed  Google Scholar 

  9. Mahoney WM Jr, Hong JH, Yaffe MB, Farrance IK (2005) The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 388(Pt 1):217–225. https://doi.org/10.1042/BJ20041434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828. https://doi.org/10.1016/j.cell.2015.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425–438. https://doi.org/10.1016/j.ccr.2009.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060. https://doi.org/10.1016/j.cub.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  13. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18(6):435–441. https://doi.org/10.1016/j.cub.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  14. Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14(3):388–398. https://doi.org/10.1016/j.devcel.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377–387. https://doi.org/10.1016/j.devcel.2008.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao B, Ye X, Yu J, Li L, Li W, Li S, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971. https://doi.org/10.1101/gad.1664408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15(10):1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139(4):757–769. https://doi.org/10.1016/j.cell.2009.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341

    Article  CAS  PubMed  Google Scholar 

  20. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G, Blandino G (2001) Physical interaction with yes-associated protein enhances p73 transcriptional activity. Eur J Cancer 37(18):15164–15173

    Google Scholar 

  21. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC (2012) β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heallen T, Zhang M, Wang J, Bonillaclaudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D, Sadoshima J (2014) A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 5:3315

    Article  PubMed  Google Scholar 

  24. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell 19(6):831–844

    Article  CAS  PubMed  Google Scholar 

  25. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10(7):837

    Article  CAS  PubMed  Google Scholar 

  26. Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, Agarinis C, Schmelzle T, Bouwmeester T, Schübeler D (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11(8):e1005465

    Article  PubMed  PubMed Central  Google Scholar 

  27. Galli GG, Carrara M, Yuan WC, Valdes-Quezada C, Gurung B, Pepe-Mooney B, Zhang T, Geeven G, Gray NS, De LW (2015) YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol Cell 60(2):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (2015) Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 17(9):1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110(4):467–478

    Article  CAS  PubMed  Google Scholar 

  30. Neto-Silva RM, de Beco S, Johnston LA (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 19(4):507–520. https://doi.org/10.1016/j.devcel.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F, Trotta V, Bellosta P, Cavicchi S (2010) dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 6(9):e1001140. https://doi.org/10.1371/journal.pgen.1001140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107(49):21064–21069. https://doi.org/10.1073/pnas.1012759107

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ, Haber DA (2009) YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 11(12):1444–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20(17):1580–1587. https://doi.org/10.1016/j.cub.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137(24):4147–4158. https://doi.org/10.1242/dev.052506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137(24):4135–4145. https://doi.org/10.1242/dev.060483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8(1):27–36

    Article  CAS  PubMed  Google Scholar 

  38. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the salvador/warts/hippo signaling network. Dev Cell 18(2):300–308. https://doi.org/10.1016/j.devcel.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD (2006) Delineation of a Fat tumor suppressor pathway. Nat Genet 38(10):1142–1150

    Article  CAS  PubMed  Google Scholar 

  40. Genevet A, Polesello C, Blight K, Robertson F, Collinson LM, Pichaud F, Tapon N (2009) The Hippo pathway regulates apical-domain size independently of its growth-control function. J Cell Sci 122(Pt 14):2360–2370. https://doi.org/10.1242/jcs.041806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738. https://doi.org/10.1158/0008-5472.CAN-10-2711

    Article  CAS  PubMed  Google Scholar 

  42. Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, Ji X, Ji F, Gong XG, Li L (2017) Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev 31(3):247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW, Taniguchi K, Yu FX, Karin M, Pan D (2015) A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 29(12):1271–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dai X, Liu H, Shen S, Guo X, Yan H, Ji X, Li L, Huang J, Feng XH, Zhao B (2017) YAP activates the Hippo pathway in a negative feedback loop. Cell Res 25(10):1175

    Article  Google Scholar 

  45. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774

    Article  CAS  PubMed  Google Scholar 

  46. Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16(19):1895–1904. https://doi.org/10.1016/j.cub.2006.08.057

    Article  CAS  PubMed  Google Scholar 

  47. Shen S, Guo X, Yan H, Lu Y, Ji X, Li L, Liang T, Zhou D, Feng XH, Zhao JC, Yu J, Gong XG, Zhang L, Zhao B (2015) A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res 25(9):997–1012. https://doi.org/10.1038/cr.2015.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI3K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma J, Huang K, Ma Y, Zhou M, Fan S (2017) The TAZ-miR-224-SMAD4 axis promotes tumorigenesis in osteosarcoma. Cell Death Dis 8(1):e2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tamm C, Bower N, Anneren C (2011) Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci 124(Pt 7):1136–1144. https://doi.org/10.1242/jcs.075796

    Article  PubMed  Google Scholar 

  51. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118. https://doi.org/10.1101/gad.1903310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang H, Pasolli HA, Fuchs E (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 108(6):2270–2275. https://doi.org/10.1073/pnas.1019603108

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schutte U, Bisht S, Heukamp LC, Kebschull M, Florin A, Haarmann J, Hoffmann P, Bendas G, Buettner R, Brossart P, Feldmann G (2014) Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl Oncol 7(2):309–321. https://doi.org/10.1016/j.tranon.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Xia H, Ge X, Chen Q, Yuan D, Qi C, Leng W, Liang C, Tang Q, Feng B (2014) CD44 acts through RhoA to regulate YAP signaling. Cell Signal 26(11):2504–2513

    Article  CAS  PubMed  Google Scholar 

  55. Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X, Zhang X, Zhang F, Chen H, Liu Y (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A 111(1):E89

    Article  CAS  PubMed  Google Scholar 

  56. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, Poon RT, Zender L, Lowe SW, Hong W (2011) AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30(10):1229–1240

    Article  CAS  PubMed  Google Scholar 

  57. Xie Q, Chen J, Feng H, Peng S, Adams U, Bai Y, Huang L, Li J, Huang J, Meng S (2013) YAP/TEAD-mediated transcription controls cellular senescence. Cancer Res 73(12):3615–3624

    Article  CAS  PubMed  Google Scholar 

  58. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395

    Article  CAS  PubMed  Google Scholar 

  59. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125(3–4):270–283

    Article  CAS  PubMed  Google Scholar 

  60. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410

    Article  CAS  PubMed  Google Scholar 

  61. Milewski RC, Chi NC, Li J, Brown C, Lu MM, Epstein JA (2004) Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3. Development 131(4):829

    Article  CAS  PubMed  Google Scholar 

  62. Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA (2011) Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One 6(6):e20309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B (2014) Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res 74(15):4170–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao Y, Zhang W, Han X, Li F, Wang X, Wang R, Fang Z, Tong X, Yao S, Li F (2015) YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun 5(1):4629

    Article  Google Scholar 

  65. Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, Sayed D, Shirakabe A, Matsushima S, Park Y (2015) miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 117(10):891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang H, Gise AV, Liu Q, Hu T, Tian X, He L, Pu W, Huang X, He L, Cai CL (2014) Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion. J Biol Chem 289(27):18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hiemer SE, Szymaniak AD, Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289(19):13461–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haskins JW, Nguyen DX, Stern DF (2014) Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal 7(355):ra116

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2004) Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 23(4):790–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt Phosphorylates the Yes-Associated Protein, YAP, to Induce Interaction with 14-3-3 and Attenuation of p73-Mediated Apoptosis. Mol Cell 11(1):11

    Article  CAS  PubMed  Google Scholar 

  71. Lapi E, Di AS, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X (2008) PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32(6):803

    Article  CAS  PubMed  Google Scholar 

  72. Murakami M, Nakagawa M, Olson EN, Nakagawa O (2005) A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci U S A 102(50):18034–18039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to B. Zhao from the National Natural Science Foundation of China Key Project (81730069), General Project (31471316) and the National Key R&D Program of China (2017YFA0504502), the National Natural Science Foundation of China International Collaboration Project (31661130150), the Fundamental Research Funds for the Central Universities, and the Qianjiang Scholar Plan of Hangzhou, the Thousand Young Talents Plan of China, and the Newton Advanced Fellowship from the Academy of Medical Sciences, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cao, X., Zhao, B. (2019). Quantitative Real-Time PCR to Measure YAP/TAZ Activity in Human Cells. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics