Skip to main content

Intracellular pH Determination for the Study of Acid Tolerance of Lactic Acid Bacteria

  • Protocol
  • First Online:
Lactic Acid Bacteria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1887))

Abstract

It is important to assess acid tolerance in lactic acid bacteria, particularly for probiotics, although it involves multiple mechanisms. Measuring the difference between intracellular and extracellular pH (ΔpH) using the fluorescent probe CFDA-SE is particularly effective for such assessments because it gives direct information on the level of tolerance in the extracellular acidic pH range from 7 to 2.5. It also enables acid adaptation to be induced and observed by slowly introducing HCl into the medium and decreasing the extracellular pH. The difference of acid tolerance between anaerobic and aerobic conditions in lactic acid bacteria can also be evaluated by measuring ΔpH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yokota A, Veenstra M, Kurdi P, van Veen HW, Konings WN (2000) Cholate resistance in Lactococcus lactis is mediated by an ATP-dependent multispecific organic anion transporter. J Bacteriol 182:5196–5201

    Article  CAS  Google Scholar 

  2. Kurdi P, van Veen HW, Tanaka H, Mierau I, Konings WN, Tannock GW, Tomita F, Yokota A (2000) Cholic acid is accumulated spontaneously, driven by membrane ΔpH, in many lactobacilli. J Bacteriol 182:6525–6528

    Article  CAS  Google Scholar 

  3. Kurdi P, Tanaka H, van Veen HW, Asano K, Tomita F, Yokota A (2003) Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology 149:2031–2037

    Article  CAS  Google Scholar 

  4. Molina-Gutierrez A, Stippl V, Delgado A, MG G¨n, Vogel RF (2002) In Situ Determination of the Intracellular pH of Lactococcus lactis and Lactobacillus plantarum during Pressure Treatment. Appl Environ Microbiol 68:4399–4406

    Article  CAS  Google Scholar 

  5. Nannen NL, Hutkins RW (1991) Intracellular pH effects in lactic acid bacteria. J Dairy Sci 74:741–746

    Article  CAS  Google Scholar 

  6. Cook GM, Russell JB (1994) The effect of extracellular pH and lactic acid on pH homeostasis in Lactococcus lactis and Streptococcus bovis. Curr Microbiol 28:165–168

    Article  CAS  Google Scholar 

  7. Siegumfeldt H, Björn Rechinger K, Jakobsen M (2000) Dynamic changes of intracellular ph in individual lactic acid bacterium cells in response to a rapid drop inextracellular pH. Appl Environ Microbiol 66:2330–2335

    Article  CAS  Google Scholar 

  8. Russell JB (1991) Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl Environ Microbiol 57:255–259

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shabala L, McMeekin T, Budde BB, Siegumfeldt H (2006) Listeria innocua and Lactobacillus delbrueckii subsp. bulgaricus employ different strategies to cope with acid stress. Int J Food Microbiol 110:1–7

    Article  CAS  Google Scholar 

  10. Salema M, Lolkema JS, San Romão MV, Loureiro-Dias MC (1996) The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol 178:3127–3132

    Article  CAS  Google Scholar 

  11. Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E (2005) Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807

    Article  CAS  Google Scholar 

  12. Fozo EM, Quivey RGJ (2004) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929–936

    Article  CAS  Google Scholar 

  13. Fernandez A, Ogawa J, Penaud S, Boudebbouze S, Ehrlich D, van de Guchte M, Maguin E (2008) Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus. Proteomics 8:3154–3163

    Article  CAS  Google Scholar 

  14. Hansen ML, Petersen MA, Risbo J, Hümmer M, Clausen A (2015) Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5. Am Biotechnol Prog 31:799–807

    Article  CAS  Google Scholar 

  15. Haddaji N, Mahdhi AK, Ismaiil MB, Bakhrouf A (2017) Effect of environmental stress on cell surface and membrane fatty acids of Lactobacillus plantarum. Arch Microbiol 99:1243–1250

    Article  Google Scholar 

  16. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  Google Scholar 

  17. Breeuwer P, Abee T (2000) Assessment of the intracellular pH of immobilized and continuously perfused yeast cells employing fluorescence ratio imaging analysis. J Microbiol Methods 39:253–264

    Article  CAS  Google Scholar 

  18. Bouix M, Ghorbal S (2015) Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation. Int J Food Microbiol 193:139–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Dr. A. Yokota in Hokkaido University for teaching the measurement of intracellular pH and Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kudo, H., Sasaki, Y. (2019). Intracellular pH Determination for the Study of Acid Tolerance of Lactic Acid Bacteria. In: Kanauchi, M. (eds) Lactic Acid Bacteria. Methods in Molecular Biology, vol 1887. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8907-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8907-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8906-5

  • Online ISBN: 978-1-4939-8907-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics