Skip to main content

Preclinical Breast Cancer Models to Investigate Metabolic Priming by Methionine Restriction

  • Protocol
  • First Online:
Book cover Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

We have developed a novel therapeutic paradigm (“metabolic priming”) for cancer whereby restriction of the essential amino acid methionine activates a number of cell-stress-response pathways that can be selectively targeted to enhance the therapeutic impact of methionine restriction. One example of metabolic priming is the combination of methionine restriction with proapoptotic TRAIL receptor-2 (TRAIL-R2) agonists. Methionine restriction enhances the cell surface expression of TRAIL-R2 selectively in transformed breast epithelial cells and renders them more susceptible to cell death induction by TRAIL-R2 agonists in cellular and murine models of breast cancer. This methods review focuses on preclinical models of breast cancer to investigate metabolic priming by methionine restriction. Multiple cell-based methods are detailed to measure cell viability, cell survival, caspase activity, apoptosis, and matrix detachment-induced cell death (anoikis). In addition, we describe an orthotopic model of metastatic breast cancer that utilizes mCherry-fluorescently-labeled human breast cancer cells. This model captures the entire metastatic cascade from the mammary gland to the lung and mimics key features of the human disease. These breast-cancer models can be readily adapted to other tumor types. Overall, we provide a stepwise, translationally-relevant approach to study metabolic priming in the context of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo HY, Herrera H, Groce A, Hoffman RM (1993) Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res 53:2479–2483

    CAS  PubMed  Google Scholar 

  2. Kreis W, Baker A, Ryan V, Bertasso A (1980) Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture. Cancer Res 40:634–641

    CAS  PubMed  Google Scholar 

  3. Lu S, Hoestje SM, Choo EM, Epner DE (2002) Methionine restriction induces apoptosis of prostate cancer cells via the c-Jun N-terminal kinase-mediated signaling pathway. Cancer Lett 179:51–58

    Article  CAS  Google Scholar 

  4. Mecham JO, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434

    Article  CAS  Google Scholar 

  5. Hoshiya Y, Guo H, Kubota T, Inada T, Asanuma F, Yamada Y et al (1995) Human tumors are methionine dependent in vivo. Anticancer Res 15:717–718

    CAS  PubMed  Google Scholar 

  6. Sugimura T, Birnbaum SM, Winitz M, Greenstein JP (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VII. Nitrogen balance in normal and tumor-bearing rats following forced feeding. Arch Biochem Biophys 81:439–447

    Article  CAS  Google Scholar 

  7. Durando X, Thivat E, Farges MC, Cellarier E, D'Incan M, Demidem A et al (2008) Optimal methionine-free diet duration for nitrourea treatment: a phase I clinical trial. Nutr Cancer 60:23–30

    Article  CAS  Google Scholar 

  8. Epner DE, Morrow S, Wilcox M, Houghton JL (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer 42:158–166

    Article  CAS  Google Scholar 

  9. Thivat E, Farges MC, Bacin F, D'Incan M, Mouret-Reynier MA, Cellarier E et al (2009) Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer Res 29:5235–5240

    CAS  PubMed  Google Scholar 

  10. Strekalova E, Malin D, Good DM, Cryns VL (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21:2780–2791

    Article  CAS  Google Scholar 

  11. Nair P, Lu M, Petersen S, Ashkenazi A (2014) Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol 544:99–128

    Article  CAS  Google Scholar 

  12. Camidge DR, Herbst RS, Gordon MS, Eckhardt SG, Kurzrock R, Durbin B et al (2010) A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res 16:1256–1263

    Article  CAS  Google Scholar 

  13. Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O'Dwyer PJ, Gordon MS et al (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28:2839–2846

    Article  CAS  Google Scholar 

  14. Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L et al (2010) A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res 16:5883–5891

    Article  CAS  Google Scholar 

  15. Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C et al (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102:506–512

    Article  CAS  Google Scholar 

  16. Toft DJ, Cryns VL (2011) Minireview: basal-like breast cancer: from molecular profiles to targeted therapies. Mol Endocrinol 25:199–211

    Article  CAS  Google Scholar 

  17. Lev DC, Kiriakova G, Price JE (2003) Selection of more aggressive variants of the gI101A human breast cancer cell line: a model for analyzing the metastatic phenotype of breast cancer. Clin Exp Metastasis 20:515–523

    Article  Google Scholar 

  18. Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270

    Article  CAS  Google Scholar 

  19. Malin D, Chen F, Schiller C, Koblinski J, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015

    Article  CAS  Google Scholar 

  20. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873

    Article  CAS  Google Scholar 

  21. Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A, Adamo B et al (2014) αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 20:56–67

    Article  CAS  Google Scholar 

  22. Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB et al (2014) NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc Natl Acad Sci U S A 111:17104–17109

    Article  CAS  Google Scholar 

  23. Fu X, Le P, Hoffman RM (1993) A metastatic orthotopic-transplant nude-mouse model of human patient breast cancer. Anticancer Res 13(4):901–904

    CAS  PubMed  Google Scholar 

  24. Li X, Wang J, Yang M, Baranov E, Jinag P, Sun F, Moussa AR, Hoffman RM (2002) Optically imageable metastatic model of human breast cancer. Clin Exp Metastasis 19(4):347–350

    Article  CAS  Google Scholar 

  25. Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M et al (2016) NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS One 11:e0163521

    Article  Google Scholar 

  26. Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA et al (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66:9308–9315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Robin Humphreys for providing agonistic TRAIL receptor mAbs. This work was supported by grants from the V Foundation for Cancer Research, Breast Cancer Research Foundation, Avon Breast Cancer Crusade, UW Carbone Cancer Center pilot funding, and the Wisconsin Partnership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Cryns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strekalova, E., Malin, D., Rajanala, H., Cryns, V.L. (2019). Preclinical Breast Cancer Models to Investigate Metabolic Priming by Methionine Restriction. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics