Skip to main content

Determining the Impact of Metabolic Nutrients on Autophagy

  • Protocol
  • First Online:
Book cover Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Tumorigenesis relies on the ability of cancer cells to obtain necessary nutrients and fulfill increased energy demands associated with rapid proliferation. However, as a result of increased metabolite consumption and poor vascularization, most cancer cells must survive in a nutrient poor and high cellular stress microenvironment. Cancer cells undergo metabolic reprogramming to evade cell death and ensure proliferation; in particular, cancer cells utilize the catabolic process of autophagy. Autophagy creates an intracellular pool of metabolites by sequestering cytosolic macromolecules in double-membrane vesicles targeted for lysosomal degradation. During times of environmental stress and nutrient starvation, autophagy is upregulated through the dynamic interactions between two nutrient sensing proteins, AMP activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR), in cooperation with Unc-51 like autophagy activating kinase 1 (ULK1). In this way, a lack of metabolic nutrients plays a critical role in inducing autophagy, while the products of autophagy also serve as readily available fuel for the cell. In this chapter, we describe methods to visualize and quantify autophagy using a fluorescent sensor of autophagic membranes. Thus, the impact of specific nutrients on autophagy can be measured using live-cell fluorescent microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Warburg O (1924) On the metabolism of cancer cells. Naturwissenschaften 12:1131–1137. https://doi.org/10.1007/Bf01504608

    Article  CAS  Google Scholar 

  3. Warburg O, Posener K, Negelein E (1924) On the metabolism of carcinoma cells. Biochem Z 152:309–344

    CAS  Google Scholar 

  4. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  Google Scholar 

  5. Lukey MJ, Katt WP, Cerione RA (2017) Targeting amino acid metabolism for cancer therapy. Drug Discov Today 22(5):796–804. https://doi.org/10.1016/j.drudis.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937. https://doi.org/10.1038/nrm2245

    Article  CAS  PubMed  Google Scholar 

  7. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518. https://doi.org/10.1038/sj.cdd.4401751

    Article  CAS  PubMed  Google Scholar 

  8. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371. https://doi.org/10.1016/j.cell.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  9. Mack HI, Zheng B, Asara JM et al (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8(8):1197–1214. https://doi.org/10.4161/auto.20586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin KR, Barua D, Kauffman AL et al (2013) Computational model for autophagic vesicle dynamics in single cells. Autophagy 9(1):74–92. https://doi.org/10.4161/auto.22532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merrill NM, Schipper JL, Karnes JB et al (2017) PI3K-C2alpha knockdown decreases autophagy and maturation of endocytic vesicles. PLoS One 12(9):e0184909. https://doi.org/10.1371/journal.pone.0184909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant number R01CA197398 from the National Cancer Institute. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. MacKeigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guillaume, J.D., Celano, S.L., Martin, K.R., MacKeigan, J.P. (2019). Determining the Impact of Metabolic Nutrients on Autophagy. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics