Skip to main content

Synthesis of Carotenoids of Industrial Interest in the Photosynthetic Bacterium Rhodopseudomonas palustris : Bioengineering and Growth Conditions

  • Protocol
  • First Online:
Microbial Carotenoids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1852))

Abstract

Rhodopseudomonas palustris is a purple photosynthetic bacterium that accumulates in the inner membrane the photosynthetic pigment spirilloxanthin, formed from lycopene. Here, we describe the procedures used to successfully engineer Rps. palustris strains to reroute the production of lycopene toward the synthesis of ß-carotene or canthaxanthin. The crtCD genes specifically involved in spirilloxanthin were replaced by crtY and crtW genes from Bradyrhizobium ORS278 to synthesize ß-carotene and (or) canthaxanthin, two pigments of industrial interest. Since the synthesis of canthaxanthin depends on the presence of oxygen, the procedure to optimize their production is also proposed. By modulating the light and oxygen during the growth process, a single species of photosynthetic bacteria, with an efficient growth rate, produces various carotenoids of economical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Moran NA, Jarkiv T (2010) Lateral transfer of genes from fungi underlines carotenoid production in aphids. Science 328:624–627

    Article  CAS  Google Scholar 

  3. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  4. Kläui H (1982) Industrial and commercial uses of carotenoids. In: Britton G, Goodwin TW (eds) Carotenoid chemistry and biochemistry. Pergamon Press, Inc., Oxford

    Google Scholar 

  5. Simpson KL, Katayama T, Chichester CO (1981) Carotenoids in fish feeds. In: Bauernfeind JC (ed) Carotenoids as colorants and vitamin A precursors. Academic Press, Inc., New York

    Google Scholar 

  6. Harwood CS, Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 54:712–717

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Larimer FW, Chain P, Hauser L et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61

    Article  CAS  PubMed  Google Scholar 

  8. Giraud E, Fardoux J, Fourrier N et al (2002) Phytochrome controls the photosystem synthesis in anoxygenic bacteria. Nature 417:202–205

    Article  CAS  PubMed  Google Scholar 

  9. Giraud E, Zappa S, Jaubert M et al (2004) Bacteriophytochrome and regulation of the synthesis of the photosynthetic apparatus in Rhodopseudomonas palustris: pitfalls of using laboratory strains. Photochem Photobiol Sci 3:587–591

    Article  CAS  PubMed  Google Scholar 

  10. Lorquin J, Molouba F, Dreyfus BL (1997) Identification of the carotenoid canthaxanthin from photosynthetic Bradyrhizobium strains. Appl Environ Microbiol 63:1151–1154

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  12. Clayton RK (1963) Towards the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75(312–318):1963

    Google Scholar 

  13. Kojadinovic M, Laugraud A, Vuillet L et al (2008) Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopsdeudomonas palustris: enhancement of photosystem synthesis and limitation of respiration. Biochim Biophys Acta 1777:163–172

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Giraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giraud, E., Hannibal, L., Chaintreuil, C., Fardoux, J., Verméglio, A. (2018). Synthesis of Carotenoids of Industrial Interest in the Photosynthetic Bacterium Rhodopseudomonas palustris : Bioengineering and Growth Conditions. In: Barreiro, C., Barredo, JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8742-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8742-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8741-2

  • Online ISBN: 978-1-4939-8742-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics