Skip to main content

Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations

  • Protocol
  • First Online:
The CRAC Channel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1843))

  • 576 Accesses

Abstract

Cytosolic Ca2+ plays an important role in cellular biology, and since its identification as a second messenger, a number of techniques and methods to analyze the changes in cytosolic Ca2+ concentration ([Ca2+]c) induced by physiological agonists have been developed. Changes in [Ca2+]c might be determined in single cells or in cell populations. Measurement in single cells allows to determine changes in [Ca2+]c at a subcellular level but often results in heterogeneous responses among cells. Determination of intracellular Ca2+ mobilization at the cell population level reduces this heterogeneity and allows [Ca2+]c measurements in small cells that load little amounts of indicator. Here, we describe the measurement of agonist-evoked changes in [Ca2+]c associated with Ca2+ influx in cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iredale PA, Dickenson JM (1995) Measurement of intracellular free calcium ion concentration in cell populations using fura-2. Methods Mol Biol 41:203–213

    PubMed  CAS  Google Scholar 

  2. Pozzan T, Arslan P, Tsien RY et al (1982) Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol 94:335–340

    Article  CAS  PubMed  Google Scholar 

  3. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  4. Sage SO (1996) Use of fluorescent indicators to measure intracellular Ca2+. In: Watson SP, Authi KS (eds) Platelets. IRL Press, Oxford, pp 67–90

    Google Scholar 

  5. Nelemans A (1999) Measurement of [Ca2+]i in cell suspensions using indo-1. Methods Mol Biol 114:41–47

    PubMed  CAS  Google Scholar 

  6. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  7. Paredes RM, Etzler JC, Watts LT et al (2008) Chemical calcium indicators. Methods 46:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S et al (2009) Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 50:872–882

    Article  CAS  PubMed  Google Scholar 

  9. Jardin I, Gomez LJ, Salido GM et al (2009) Dynamic interaction of hTRPC6 with the Orai1/STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276

    Article  CAS  PubMed  Google Scholar 

  10. Fu G, Gascoigne NR (2009) Multiplexed labeling of samples with cell tracking dyes facilitates rapid and accurate internally controlled calcium flux measurement by flow cytometry. J Immunol Methods 350:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vines A, McBean GJ, Blanco-Fernandez A (2010) A flow-cytometric method for continuous measurement of intracellular Ca(2+) concentration. Cytometry A 77:1091–1097

    Article  CAS  PubMed  Google Scholar 

  12. Shoback D, Chen TH, Pratt S et al (1995) Thapsigargin stimulates intracellular calcium mobilization and inhibits parathyroid hormone release. J Bone Miner Res 10:743–750

    Article  CAS  PubMed  Google Scholar 

  13. Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sweeney ZK, Minatti A, Button DC et al (2009) Small-molecule inhibitors of store-operated calcium entry. ChemMedChem 4:706–718

    Article  CAS  PubMed  Google Scholar 

  15. Dionisio N, Redondo PC, Jardin I et al (2012) Transient receptor potential channels in human platelets: expression and functional role. Curr Mol Med 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

  16. Yates SL, Fluhler EN, Lippiello PM (1992) Advances in the use of the fluorescent probe fura-2 for the estimation of intrasynaptosomal calcium. J Neurosci Res 32:255–260

    Article  CAS  PubMed  Google Scholar 

  17. Sutachan JJ, Montoya GJ, Xu F et al (2006) Pluronic F-127 affects the regulation of cytoplasmic Ca2+ in neuronal cells. Brain Res 1068:131–137

    Article  CAS  PubMed  Google Scholar 

  18. Bootman MD, Rietdorf K, Collins T et al (2013) Loading fluorescent Ca2+ indicators into living cells. Cold Spring Harb Protoc 2013:122–125

    PubMed  Google Scholar 

  19. Bootman MD, Roderick HL (2011) Using calcium imaging as a readout of GPCR activation. Methods Mol Biol 746:277–296

    Article  CAS  PubMed  Google Scholar 

  20. Wolfe F (1991) Gout and hyperuricemia. Am Fam Physician 43:2141–2150

    PubMed  CAS  Google Scholar 

  21. Del Maschio A, Livio M, Cerletti C et al (1984) Inhibition of human platelet cyclo-oxygenase activity by sulfinpyrazone and three of its metabolites. Eur J Pharmacol 101:209–214

    Article  PubMed  Google Scholar 

  22. Sharma HM, Moore S, Merrick HW et al (1972) Platelets in early hyperacute allograft rejection in kidneys and their modification by sulfinpyrazone (Anturan) therapy. An experimental study. Am J Pathol 66:445–460

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Rosado JA, Rosenzweig I, Harding S et al (2001) Tumor necrosis factor-alpha inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. Am J Physiol Cell Physiol 280:C1636–C1644

    Article  CAS  PubMed  Google Scholar 

  24. Jacob R, Murphy E, Lieberman M (1987) Free calcium in isolated chick embryo heart cells measured using quin2 and fura-2. Am J Phys 253:C337–C342

    Article  CAS  Google Scholar 

  25. Ng LC, McCormack MD, Airey JA et al (2009) TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587:2429–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dalrymple A, Mahn K, Poston L et al (2007) Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13:171–179

    Article  CAS  PubMed  Google Scholar 

  27. Tu P, Kunert-Keil C, Lucke S et al (2009) Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J Neurochem 108:126–138

    Article  CAS  PubMed  Google Scholar 

  28. Okada T, Inoue R, Yamazaki K et al (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  CAS  PubMed  Google Scholar 

  29. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277:42157–42163

    Article  CAS  PubMed  Google Scholar 

  30. Jardin I, Lopez JJ, Pariente JA et al (2008) Intracellular calcium release from human platelets: different messengers for multiple stores. Trends Cardiovasc Med 18:57–61

    Article  CAS  PubMed  Google Scholar 

  31. Cavallini L, Coassin M, Alexandre A (1995) Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J 310(Pt 2):449–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wuytack F, Papp B, Verboomen H et al (1994) A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem 269:1410–1416

    PubMed  CAS  Google Scholar 

  33. Bobe R, Bredoux R, Wuytack F et al (1994) The rat platelet 97-kDa Ca2+ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein. J Biol Chem 269:1417–1424

    PubMed  CAS  Google Scholar 

  34. Dedkova EN, Sigova AA, Zinchenko VP (2000) Mechanism of action of calcium ionophores on intact cells: ionophore-resistant cells. Membr Cell Biol 13:357–368

    PubMed  CAS  Google Scholar 

  35. Thakur P, Dadsetan S, Fomina AF (2012) Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J Biol Chem 287:37233–37244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeng B, Chen GL, Xu SZ (2012) Store-independent pathways for cytosolic STIM1 clustering in the regulation of store-operated Ca(2+) influx. Biochem Pharmacol 84:1024–1035

    Article  CAS  PubMed  Google Scholar 

  37. Sei Y, Gallagher KL, Daly JW (2001) Multiple effects of caffeine on Ca2+ release and influx in human B lymphocytes. Cell Calcium 29:149–160

    Article  CAS  PubMed  Google Scholar 

  38. Bultynck G, Szlufcik K, Kasri NN et al (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sage SO, Merritt JE, Hallam TJ et al (1989) Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J 258:923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Yu Y, Yang J (2011) Structural biology of TRP channels. Adv Exp Med Biol 704:1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jardin I, Lopez JJ, Redondo PC et al (2009) Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochim Biophys Acta 1793:1614–1622

    Article  CAS  PubMed  Google Scholar 

  42. Mercer JC, Dehaven WI, Smyth JT et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peinelt C, Vig M, Koomoa DL et al (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prakriya M, Feske S, Gwack Y et al (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  45. Bakowski D, Parekh AB (2002) Monovalent cation permeability and Ca(2+) block of the store-operated Ca(2+) current I(CRAC )in rat basophilic leukemia cells. Pflugers Arch 443:892–902

    Article  CAS  PubMed  Google Scholar 

  46. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+−inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work had been supported by Ministerio de Economia y Competitividad (BFU2013-45564-C2-1-P and BFU2016-74932-C2-1-P) and Junta de Extremadura-FEDER (GR15029 and IB16046). N.D. is supported by a fellowship from the University of Extremadura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Redondo, P.C., Berna-Erro, A., Dionisio, N., Rosado, J.A. (2018). Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations. In: Penna, A., Constantin, B. (eds) The CRAC Channel. Methods in Molecular Biology, vol 1843. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8704-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8704-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8702-3

  • Online ISBN: 978-1-4939-8704-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics