Skip to main content

Assessment of Influenza Virus Hemagglutinin Stalk-Specific Antibody Responses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Animal models are essential to examine the pathogenesis and transmission of influenza viruses and for preclinical evaluation of influenza virus vaccines. Among the animal models used in influenza virus research, the domestic ferret (Mustela putorius furo) is the gold standard. As seen in humans, infection with influenza virus or immunization with an influenza virus vaccine induces humoral and cellular immunity in ferrets that provides protection against infection by an antigenically similar influenza virus. Antibodies against the globular head domain of the influenza hemagglutinin can provide sterilizing immunity against virus infection by blocking receptor binding. However, antibodies that bind the stalk region of the hemagglutinin also confer protection by several mechanisms including antibody-dependent cellular cytotoxicity or phagocytosis. Recently, the antigenically and structurally conserved hemagglutinin stalk has become an attractive target for the development of universal influenza virus vaccines that hold the promise to provide protection against influenza epidemics and pandemics. Herein, in vivo and in vitro assays, including optimization of assay conditions to examine hemagglutinin stalk-specific antibody responses in small animal models, are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu WC, Jan JT, Huang YJ, Chen TH, Wu SC (2016) Unmasking stem-specific neutralizing epitopes by abolishing N-linked glycosylation sites of influenza virus hemagglutinin proteins for vaccine design. J Virol 90(19):8496–8508. https://doi.org/10.1128/JVI.00880-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Krammer F, Palese P (2015) Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14(3):167–182. https://doi.org/10.1038/nrd4529

    Article  PubMed  CAS  Google Scholar 

  3. Mullarkey CE, Bailey MJ, Golubeva DA, Tan GS, Nachbagauer R, He W, Novakowski KE, Bowdish DM, Miller MS, Palese P (2016) Broadly neutralizing hemagglutinin stalk-specific antibodies induce potent phagocytosis of immune complexes by neutrophils in an fc-dependent manner. mBio 7(5):e01624-16. https://doi.org/10.1128/mBio.01624-16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ekiert DC, Wilson IA (2012) Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. Curr Opin Virol 2(2):134–141. https://doi.org/10.1016/j.coviro.2012.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Krammer F, Palese P (2013) Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol 3(5):521–530. https://doi.org/10.1016/j.coviro.2013.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251. https://doi.org/10.1126/science.1171491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044):850–856. https://doi.org/10.1126/science.1205669

    Article  PubMed  CAS  Google Scholar 

  8. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin O, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH (2012) Highly conserved protective epitopes on influenza B viruses. Science 337(6100):1343–1348. https://doi.org/10.1126/science.1222908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Margine I, Krammer F (2014) Animal models for influenza viruses: implications for universal vaccine development. Pathogens 3(4):845–874. https://doi.org/10.3390/pathogens3040845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hai R, Krammer F, Tan GS, Pica N, Eggink D, Maamary J, Margine I, Albrecht RA, Palese P (2012) Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 86(10):5774–5781. https://doi.org/10.1128/JVI.00137-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pica N, Hai R, Krammer F, Wang TT, Maamary J, Eggink D, Tan GS, Krause JC, Moran T, Stein CR, Banach D, Wrammert J, Belshe RB, Garcia-Sastre A, Palese P (2012) Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci U S A 109(7):2573–2578. https://doi.org/10.1073/pnas.1200039109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, Runstadler JA, Wilson PC, Albrecht RA, Garcia-Sastre A, Palese P (2013) Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J Virol 87(19):10435–10446. https://doi.org/10.1128/JVI.01715-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Margine I, Hai R, Albrecht RA, Obermoser G, Harrod AC, Banchereau J, Palucka K, Garcia-Sastre A, Palese P, Treanor JJ, Krammer F (2013) H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J Virol 87(8):4728–4737. https://doi.org/10.1128/JVI.03509-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Krammer F, Pica N, Hai R, Tan GS, Palese P (2012) Hemagglutinin stalk-reactive antibodies are boosted following sequential infection with seasonal and pandemic H1N1 influenza virus in mice. J Virol 86(19):10302–10307. https://doi.org/10.1128/JVI.01336-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Krammer F, Hai R, Yondola M, Tan GS, Leyva-Grado VH, Ryder AB, Miller MS, Rose JK, Palese P, Garcia-Sastre A, Albrecht RA (2014) Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol 88(6):3432–3442. https://doi.org/10.1128/JVI.03004-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nachbagauer R, Miller MS, Hai R, Ryder AB, Rose JK, Palese P, Garcia-Sastre A, Krammer F, Albrecht RA (2015) Hemagglutinin stalk immunity reduces influenza virus replication and transmission in ferrets. J Virol 90(6):3268–3273. https://doi.org/10.1128/JVI.02481-15

    Article  PubMed  CAS  Google Scholar 

  17. Nachbagauer R, Choi A, Izikson R, Cox MM, Palese P, Krammer F (2016) Age dependence and Isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humans. mBio 7(1):e01996-01915. https://doi.org/10.1128/mBio.01996-15

    Article  CAS  Google Scholar 

  18. Nachbagauer R, Wohlbold TJ, Hirsh A, Hai R, Sjursen H, Palese P, Cox RJ, Krammer F (2014) Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol 88(22):13260–13268. https://doi.org/10.1128/JVI.02133-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ellebedy AH, Krammer F, Li GM, Miller MS, Chiu C, Wrammert J, Chang CY, Davis CW, McCausland M, Elbein R, Edupuganti S, Spearman P, Andrews SF, Wilson PC, Garcia-Sastre A, Mulligan MJ, Mehta AK, Palese P, Ahmed R (2014) Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc Natl Acad Sci U S A 111(36):13133–13138. https://doi.org/10.1073/pnas.1414070111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Belser JA, Katz JM, Tumpey TM (2011) The ferret as a model organism to study influenza A virus infection. Dis Model Mech 4(5):575–579. https://doi.org/10.1242/dmm.007823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Oh DY, Hurt AC (2016) Using the ferret as an animal model for investigating influenza antiviral effectiveness. Front Microbiol 7:80. https://doi.org/10.3389/fmicb.2016.00080

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thangavel RR, Bouvier NM (2014) Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 410:60–79. https://doi.org/10.1016/j.jim.2014.03.023

    Article  PubMed  CAS  Google Scholar 

  23. Smee DF, Barnard DL (2013) Methods for evaluation of antiviral efficacy against influenza virus infections in animal models. Methods Mol Biol 1030:407–425. https://doi.org/10.1007/978-1-62703-484-5_31

    Article  PubMed  CAS  Google Scholar 

  24. Bodewes R, Rimmelzwaan GF, Osterhaus AD (2010) Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 9(1):59–72. https://doi.org/10.1586/erv.09.148

    Article  PubMed  Google Scholar 

  25. Tripp RA, Tompkins SM (2009) Animal models for evaluation of influenza vaccines. Curr Top Microbiol Immunol 333:397–412. https://doi.org/10.1007/978-3-540-92165-3_19

    Article  PubMed  Google Scholar 

  26. Barnard DL (2009) Animal models for the study of influenza pathogenesis and therapy. Antivir Res 82(2):A110–A122. https://doi.org/10.1016/j.antiviral.2008.12.014

    Article  PubMed  CAS  Google Scholar 

  27. van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J (2008) Animal models in influenza vaccine testing. Expert Rev Vaccines 7(6):783–793. https://doi.org/10.1586/14760584.7.6.783

    Article  PubMed  CAS  Google Scholar 

  28. Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F (2015) Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33(29):3314–3321. https://doi.org/10.1016/j.vaccine.2015.05.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Valkenburg SA, Mallajosyula VV, Li OT, Chin AW, Carnell G, Temperton N, Varadarajan R, Poon LL (2016) Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Sci Rep 6:22666. https://doi.org/10.1038/srep22666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Krammer F, Margine I, Tan GS, Pica N, Krause JC, Palese P (2012) A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 7(8):e43603. https://doi.org/10.1371/journal.pone.0043603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cherukuri A, Servat E, Woo J (2012) Vaccine-specific antibody secreting cells are a robust early marker of LAIV-induced B-cell response in ferrets. Vaccine 30(2):237–246. https://doi.org/10.1016/j.vaccine.2011.11.001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported in part by the Bill & Melinda Gates Foundation, NIH/NIAID grants U19 AI109946 and P01AI097092, and the NIH/NIAID Centers of Influenza Virus Research and Surveillance (CEIRS) contract HHSN272201400008C. WCL is a recipient of a training fellowship from the Taiwan Ministry of Science and Technology (MOST 105-2917-I-564-006-A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy A. Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, WC., Nachbagauer, R., Krammer, F., Albrecht, R.A. (2018). Assessment of Influenza Virus Hemagglutinin Stalk-Specific Antibody Responses. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics