Skip to main content

An Animal Model for Genetic Analysis of Multi-Gene Families: Cloning and Transgenesis of Large Tandemly Repeated Histone Gene Clusters

  • Protocol
  • First Online:
Histone Variants

Abstract

Histone post-translational modifications (PTMs) are thought to participate in a range of essential molecular and cellular processes, including gene expression, replication, and nuclear organization. Importantly, histone PTMs are also thought to be prime candidates for carriers of epigenetic information across cell cycles and generations. However, directly testing the necessity of histone PTMs themselves in these processes by mutagenesis has been extremely difficult to carry out because of the highly repetitive nature of histone genes in animal genomes. We developed a transgenic system to generate Drosophila melanogaster genotypes in which the entire complement of replication-dependent histone genes is mutant at a residue of interest. We built a BAC vector containing a visible marker for lineage tracking along with the capacity to clone large (60–100 kb) inserts that subsequently can be site-specifically integrated into the D. melanogaster genome. We demonstrate that artificial tandem arrays of the core 5 kb replication-dependent histone repeat can be generated with relative ease. This genetic platform represents the first histone replacement system to leverage a single tandem transgenic insertion for facile genetics and analysis of molecular and cellular phenotypes. We demonstrate the utility of our system for directly preventing histone residues from being modified, and studying the consequent phenotypes. This system can be generalized to the cloning and transgenic insertion of any tandemly repeated sequence of biological interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev 18(2):152–158

    Article  CAS  PubMed  Google Scholar 

  3. Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9(10):815–820

    Article  CAS  PubMed  Google Scholar 

  4. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17

    Article  CAS  PubMed  Google Scholar 

  5. Carlson SM, Gozani O (2016) Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb Perspect Med 6(11):a026435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen K, Liu J, Liu S et al (2017) Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity. Cell 170(3):492–506 e14

    Article  CAS  PubMed  Google Scholar 

  7. Park JH, Cosgrove MS, Youngman E et al (2002) A core nucleosome surface crucial for transcriptional silencing. Nat Genet 32(2):273–279

    Article  CAS  PubMed  Google Scholar 

  8. Hyland EM, Cosgrove MS, Molina H et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25(22):10060–10070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tompa R, Madhani HD (2007) Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex. Genetics 175(2):585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  11. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(a) tail. Nat Rev Genet 9(11):843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lifton RP, Goldberg ML, Karp RW et al (1978) The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harb Symp Quant Biol 42(Pt 2):1047–1051

    Article  CAS  PubMed  Google Scholar 

  14. Günesdogan U, Jackle H, Herzig A (2010) A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes. EMBO Rep 11(10):772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hödl M, Basler K (2012) Transcription in the absence of histone H3.2 and H3K4 methylation. Curr Biol 22(23):2253–2257

    Article  CAS  PubMed  Google Scholar 

  16. Pengelly AR, Copur O, Jackle H et al (2013) A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339(6120):698–699

    Article  CAS  PubMed  Google Scholar 

  17. McKay DJ, Klusza S, Penke TJ et al (2015) Interrogating the function of metazoan histones using engineered gene clusters. Dev Cell 32(3):373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graves HK, Wang P, Lagarde M et al (2016) Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in drosophila. Epigenetics Chromatin 9:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Penke TJ, McKay DJ, Strahl BD et al (2016) Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 30(16):1866–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meers MP, Adelman K, Duronio RJ, et al (2018) Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila. BMC Genomics 19(1):157

    Google Scholar 

  21. Meers MP, Henriques T, Lavender CA et al (2017) Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. eLife 6:e23249

    Article  PubMed  PubMed Central  Google Scholar 

  22. Penke TJ, McKay DJ, Strahl BD, et al. (2018) Functional redundancy of variant and canonical histone H3 lysine 9 modification in Drosophila. Genetics 208(1):229–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gregory Matera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meers, M.P., Leatham-Jensen, M., Penke, T.J.R., McKay, D.J., Duronio, R.J., Matera, A.G. (2018). An Animal Model for Genetic Analysis of Multi-Gene Families: Cloning and Transgenesis of Large Tandemly Repeated Histone Gene Clusters. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics