Skip to main content

Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments

  • Protocol
  • First Online:
Antibody Engineering

Abstract

The adaptive immune system of sharks comprises a heavy chain-only antibody isotype, referred to as immunoglobulin new antigen receptor (IgNAR). Antigen binding in case of IgNAR antibodies is mediated by a single variable domain (vNAR). Due to their inherent beneficial biophysical properties, such as small size and high thermal stability combined with a high specificity and affinity to their target antigens, vNAR domains emerged as promising tools for biotechnological and biomedical applications. Herein, we present detailed protocols for the engineering of pH-sensitivity into IgNAR V domains by constructing histidine-enriched and CDR3-diversified semisynthetic antibody libraries which can then be screened upon using yeast surface display. Protonation or deprotonation of incorporated histidine residues at different pH values results in structural transitions caused by altered electrostatic interactions. These interactions account for an altered binding behavior toward the target antigen. In the following protocol, we describe the generation of a semisynthetic vNAR master library that comprises two histidine residues on average in the 12-residue CDR3 loop. Moreover, once a pH-dependent vNAR population toward the target antigen is identified, this population can further be optimized in terms of affinity and pH sensitivity upon conducting a CDR1-mediated affinity maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173. https://doi.org/10.1038/374168a0

    Article  PubMed  CAS  Google Scholar 

  2. Zielonka S, Empting M, Grzeschik J, Konning D, Barelle CJ, Kolmar H (2015) Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 7(1):15–25. https://doi.org/10.4161/19420862.2015.989032

    Article  PubMed  CAS  Google Scholar 

  3. Greenberg AS, Hughes AL, Guo J, Avila D, McKinney EC, Flajnik MF (1996) A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 26(5):1123–1129. https://doi.org/10.1002/eji.1830260525

    Article  PubMed  CAS  Google Scholar 

  4. Krah S, Schroter C, Zielonka S, Empting M, Valldorf B, Kolmar H (2016) Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol 38(1):21–28. https://doi.org/10.3109/08923973.2015.1102934

    Article  PubMed  CAS  Google Scholar 

  5. Dooley H, Stanfield RL, Brady RA, Flajnik MF (2006) First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A 103(6):1846–1851. https://doi.org/10.1073/pnas.0508341103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Criscitiello MF, Saltis M, Flajnik MF (2006) An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc Natl Acad Sci U S A 103(13):5036–5041. https://doi.org/10.1073/pnas.0507074103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Diaz M, Stanfield RL, Greenberg AS, Flajnik MF (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 54(7):501–512. https://doi.org/10.1007/s00251-002-0479-z

    Article  PubMed  CAS  Google Scholar 

  8. Kovalenko OV, Olland A, Piche-Nicholas N, Godbole A, King D, Svenson K, Calabro V, Muller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L (2013) Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. J Biol Chem 288(24):17408–17419. https://doi.org/10.1074/jbc.M112.435289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305(5691):1770–1773. https://doi.org/10.1126/science.1101148

    Article  PubMed  CAS  Google Scholar 

  10. Stanfield RL, Dooley H, Verdino P, Flajnik MF, Wilson IA (2007) Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 367(2):358–372. https://doi.org/10.1016/j.jmb.2006.12.045

    Article  PubMed  CAS  Google Scholar 

  11. Streltsov VA, Carmichael JA, Nuttall SD (2005) Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype. Protein Sci 14(11):2901–2909. https://doi.org/10.1110/ps.051709505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Simmons DP, Streltsov VA, Dolezal O, Hudson PJ, Coley AM, Foley M, Proll DF, Nuttall SD (2008) Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures. Proteins 71(1):119–130. https://doi.org/10.1002/prot.21663

    Article  PubMed  CAS  Google Scholar 

  13. Flajnik MF, Deschacht N, Muyldermans S (2011) A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol 9(8):e1001120. https://doi.org/10.1371/journal.pbio.1001120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD (2004) Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci U S A 101(34):12444–12449. https://doi.org/10.1073/pnas.0403509101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH, Gupta A, Bai T, Murphy VJ, Anders RF, Foley M, Nuttall SD (2007) Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 15(11):1452–1466. https://doi.org/10.1016/j.str.2007.09.011

    Article  PubMed  CAS  Google Scholar 

  16. Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schafer E, Steinmann B, Empting M, Ockelmann P, Lierz M, Kolmar H (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245. https://doi.org/10.1016/j.jbiotec.2014.04.023

    Article  PubMed  CAS  Google Scholar 

  17. Liu JL, Anderson GP, Delehanty JB, Baumann R, Hayhurst A, Goldman ER (2007) Selection of cholera toxin specific IgNAR single-domain antibodies from a naive shark library. Mol Immunol 44(7):1775–1783. https://doi.org/10.1016/j.molimm.2006.07.299

    Article  PubMed  CAS  Google Scholar 

  18. Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG (2011) Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol 48(15–16):2027–2037. https://doi.org/10.1016/j.molimm.2011.06.437

    Article  PubMed  CAS  Google Scholar 

  19. Walsh R, Nuttall S, Revill P, Colledge D, Cabuang L, Soppe S, Dolezal O, Griffiths K, Bartholomeusz A, Locarnini S (2011) Targeting the hepatitis B virus precore antigen with a novel IgNAR single variable domain intrabody. Virology 411(1):132–141. https://doi.org/10.1016/j.virol.2010.12.034

    Article  PubMed  CAS  Google Scholar 

  20. Liu JL, Anderson GP, Goldman ER (2007) Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnol 7:78. https://doi.org/10.1186/1472-6750-7-78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nuttall SD, Humberstone KS, Krishnan UV, Carmichael JA, Doughty L, Hattarki M, Coley AM, Casey JL, Anders RF, Foley M, Irving RA, Hudson PJ (2004) Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Proteins 55(1):187–197. https://doi.org/10.1002/prot.20005

    Article  PubMed  CAS  Google Scholar 

  22. Nuttall SD, Krishnan UV, Doughty L, Pearson K, Ryan MT, Hoogenraad NJ, Hattarki M, Carmichael JA, Irving RA, Hudson PJ (2003) Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. Eur J Biochem 270(17):3543–3554

    Article  CAS  PubMed  Google Scholar 

  23. Ohtani M, Hikima J, Jung TS, Kondo H, Hirono I, Takeyama H, Aoki T (2013) Variable domain antibodies specific for viral hemorrhagic septicemia virus (VHSV) selected from a randomized IgNAR phage display library. Fish Shellfish Immunol 34(2):724–728. https://doi.org/10.1016/j.fsi.2012.11.041

    Article  PubMed  CAS  Google Scholar 

  24. Bojalil R, Mata-Gonzalez MT, Sanchez-Munoz F, Yee Y, Argueta I, Bolanos L, Amezcua-Guerra LM, Camacho-Villegas TA, Sanchez-Castrejon E, Garcia-Ubbelohde WJ, Licea-Navarro AF, Marquez-Velasco R, Paniagua-Solis JF (2013) Anti-tumor necrosis factor VNAR single domains reduce lethality and regulate underlying inflammatory response in a murine model of endotoxic shock. BMC Immunol 14:17. https://doi.org/10.1186/1471-2172-14-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Konning D, Zielonka S, Sellmann C, Schroter C, Grzeschik J, Becker S, Kolmar H (2016) Isolation of a pH-sensitive IgNAR variable domain from a yeast-displayed, histidine-doped master library. Mar Biotechnol (NY) 18(2):161–167. https://doi.org/10.1007/s10126-016-9690-z

    Article  CAS  Google Scholar 

  26. Konning D, Rhiel L, Empting M, Grzeschik J, Sellmann C, Schroter C, Zielonka S, Dickgiesser S, Pirzer T, Yanakieva D, Becker S, Kolmar H (2017) Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci Rep 7(1):9676. https://doi.org/10.1038/s41598-017-10513-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsukamoto M, Watanabe H, Ooishi A, Honda S (2014) Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions. J Biol Eng 8:15. https://doi.org/10.1186/1754-1611-8-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ, Sagert JG, Hostetter DR, Han F, Gee J, Flandez J, Markham K, Nguyen M, Krimm M, Wong KR, Liu S, Daugherty PS, West JW, Lowman HB (2013) Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 5(207):207ra144. https://doi.org/10.1126/scitranslmed.3006682

    Article  PubMed  CAS  Google Scholar 

  29. Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, Wakabayashi T, Hayasaka A, Kadono S, Miyazaki T, Haraya K, Sekimori Y, Kojima T, Nabuchi Y, Aso Y, Kawabe Y, Hattori K (2010) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28(11):1203–1207. https://doi.org/10.1038/nbt.1691

    Article  PubMed  CAS  Google Scholar 

  30. Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM, Brown CL, Chabot J, Gomes B, Garzone P, Rossi A, Strop P, Shelton D, Pons J, Rajpal A (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287(14):11090–11097. https://doi.org/10.1074/jbc.M111.319764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schroter C, Gunther R, Rhiel L, Becker S, Toleikis L, Doerner A, Becker J, Schonemann A, Nasu D, Neuteboom B, Kolmar H, Hock B (2015) A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. MAbs 7(1):138–151. https://doi.org/10.4161/19420862.2014.985993

    Article  PubMed  CAS  Google Scholar 

  32. Igawa T, Mimoto F, Hattori K (2014) pH-dependent antigen-binding antibodies as a novel therapeutic modality. Biochim Biophys Acta 1844(11):1943–1950. https://doi.org/10.1016/j.bbapap.2014.08.003

    Article  PubMed  CAS  Google Scholar 

  33. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  PubMed  CAS  Google Scholar 

  34. Ewert S, Honegger A, Pluckthun A (2003) Structure-based improvement of the biophysical properties of immunoglobulin VH domains with a generalizable approach. Biochemistry 42(6):1517–1528. https://doi.org/10.1021/bi026448p

    Article  PubMed  CAS  Google Scholar 

  35. Ewert S, Huber T, Honegger A, Pluckthun A (2003) Biophysical properties of human antibody variable domains. J Mol Biol 325(3):531–553

    Article  CAS  PubMed  Google Scholar 

  36. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. https://doi.org/10.1093/protein/gzq002

    Article  PubMed  CAS  Google Scholar 

  37. Traxlmayr MW, Lobner E, Hasenhindl C, Stadlmayr G, Oostenbrink C, Ruker F, Obinger C (2014) Construction of pH-sensitive Her2-binding IgG1-Fc by directed evolution. Biotechnol J 9(8):1013–1022. https://doi.org/10.1002/biot.201300483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444

    Article  CAS  PubMed  Google Scholar 

  39. Angelini A, Chen TF, de Picciotto S, Yang NJ, Tzeng A, Santos MS, Van Deventer JA, Traxlmayr MW, Wittrup KD (2015) Protein engineering and selection using yeast surface display. Methods Mol Biol 1319:3–36. https://doi.org/10.1007/978-1-4939-2748-7_1

    Article  PubMed  Google Scholar 

  40. Diaz M, Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci U S A 95(24):14343–14348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  42. Harris LJ, Larson SB, Hasel KW, McPherson A (1997) Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36(7):1581–1597. https://doi.org/10.1021/bi962514+

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part funded by the Merck Lab at Technische Universität Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kolmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Könning, D. et al. (2018). Construction of Histidine-Enriched Shark IgNAR Variable Domain Antibody Libraries for the Isolation of pH-Sensitive vNAR Fragments. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics