Skip to main content

Capture Hybridization of Long-Range DNA Fragments for High-Throughput Sequencing

  • Protocol
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1754))

  • 5418 Accesses

Abstract

Capture hybridization coupled with high-throughput sequencing (HTS) has become one of the most popular approaches to address some scientific problems not only for fundamental evolution but also for ecology and human disease in recent years. However, the technical problem of limited probe capture ability affects its widespread application. Here, we propose to capture hybridize long-range DNA fragments for HTS (termed LR-LCH). We provide a case of three amphibian samples to examine LR-LCH with 2 kb libraries and comparison of standard capture hybridization with 480 bp libraries. Capture sensitivity increased from an average 13.57% of standard capture hybridization to an average 19.80% of LR-LCH; capture efficiency also increased from an average 72.56% of standard capture hybridization to an average 97.71% of LR-LCH. These indicate that longer fragments in the library generally contain both relatively variable regions and relatively conservative regions. The divergent parts of target DNA are enriched along with conservative parts of DNA sequence that effectively captured during hybridization. We present a protocol that allows users to overcome the low capture sensitivity problem for high divergent regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12s rRNA:

12s ribosomal RNA

16s rRNA:

16s ribosomal RNA

apt6:

ATP synthase subunit 6

apt8:

ATP synthase subunit 8

bp:

Base pair

CO1:

Barcoding gene from COX1

COX1:

Cytochrome c oxidase subunit I

COX2:

Cytochrome c oxidase subunit II

COX3:

Cytochrome c oxidase subunit III

cytb:

Cytochrome b

HTS:

High-throughput sequencing

K2P:

Kimura 2-parameter

kb:

Kilobase

LR-LCH:

Long-range library capture hybridization

LR-PCR:

Long-range polymerase chain reaction

mtDNA:

Mitochondrial DNA

Mitogenome:

Mitochondrial genome

ND1:

NADH dehydrogenase subunit 1

ND2:

NADH dehydrogenase subunit 2

ND3:

NADH dehydrogenase subunit 3

ND4:

NADH dehydrogenase subunit 4

ND5:

NADH dehydrogenase subunit 5

ND6:

NADH dehydrogenase subunit 6

PGM:

Ion Torrent Personal Genome Machine

References

  1. Mason VC et al (2011) Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 21:1695–1704

    Article  CAS  Google Scholar 

  2. Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202

    Article  Google Scholar 

  3. Tsangaras K et al (2014) Hybridization capture reveals evolution and conservation across the entire koala retrovirus genome. PLoS One 9:e95633

    Article  Google Scholar 

  4. Gasc C et al (2016) Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 44:4504–4518

    Article  CAS  Google Scholar 

  5. Leaché AD et al (2015) Phylogenomics of Phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biol Evol 7(3):706–719. https://doi.org/10.1093/gbe/evv026

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suchan T et al (2016) Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS One 11(3):e0151651. https://doi.org/10.1371/journal.pone.0151651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller MR et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  Google Scholar 

  8. Wang Z et al (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  9. Bekaert B et al (2016) In-solution hybridization for the targeted enrichment of the whole mitochondrial genome. Methods Mol Biol 1420:173–183

    Article  CAS  Google Scholar 

  10. Hedtke SM et al (2013) Targeted enrichment: maximizing orthologous gene comparisons across deep evolutionary time. PLoS One 8:e67908

    Article  CAS  Google Scholar 

  11. Faircloth BC et al (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726

    Article  Google Scholar 

  12. Gnirke A et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189

    Article  CAS  Google Scholar 

  13. Ku CS et al (2012) Exome versus transcriptome sequencing in identifying coding region variants. Expert Rev Mol Diagn 12:241–251

    Article  CAS  Google Scholar 

  14. Manthey JD et al (2016) Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in Cardinalid tanagers (Aves, genus: Piranga). Syst Biol 65(4):640–650. https://doi.org/10.1093/sysbio/syw005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bi K et al (2012) Transcriptome based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics 13:403

    Article  CAS  Google Scholar 

  16. Jacobsen CS (1995) Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl Environ Microbiol 61(9):3347–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Noonan JP et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314:1113–1118

    Article  CAS  Google Scholar 

  18. Tsangaras K et al (2014) Hybridization capture using short PCR products enriches small genomes by capturing flanking sequences (CapFlank). PLoS One 9(10):e109101. https://doi.org/10.1371/journal.pone.0109101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horn S (2012) Target enrichment via DNA hybridization capture. Methods Mol Biol 840:177–188

    Article  CAS  Google Scholar 

  20. Karamitros T, Magiorkinis G (2015) A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits. Nucleic Acids Res 43(22):e152. https://doi.org/10.1093/nar/gkv773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Penalba JV et al (2014) Sequence capture using PCR-generated probes: a cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol Ecol Resour 14:1000–1010

    CAS  PubMed  Google Scholar 

  22. Li C et al (2013) Capturing protein-coding genes across highly divergent species. BioTechniques 54(6):321–326. https://doi.org/10.2144/000114039

    Article  CAS  PubMed  Google Scholar 

  23. Paijmans JL et al (2016) Impact of enrichment conditions on cross-species capture of fresh and degraded DNA. Mol Ecol Resour 16:42–55

    Article  CAS  Google Scholar 

  24. Li G et al (2016) Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26(1):1–11. https://doi.org/10.1101/gr.186668.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hahn C et al (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads - a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129

    Article  CAS  Google Scholar 

  26. Burlibasa C, et al (1999) Genome sequence assembly using trace signals and additional sequence information. German conference on bioinformatics, vol. 99, pp. 45–56

    Google Scholar 

  27. Sawyer S et al (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7:e34131

    Article  CAS  Google Scholar 

  28. Eckert SE et al (2016) Enrichment by hybridisation of long DNA fragments for Nanopore sequencing. Microb Genom. https://doi.org/10.1099/mgen.0.000087

  29. Chevalier FD et al (2014) Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites. BMC Genomics 15:617

    Article  Google Scholar 

  30. Denonfoux J et al (2013) Gene capture coupled to high throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 20:185–196

    Article  CAS  Google Scholar 

  31. Fan PF et al (2017) Description of a new species of Hoolock gibbon (primates: Hylobatidae) based on integrative taxonomy. Am J Primatol 79:e22631. https://doi.org/10.1002/ajp.22631

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jing Che’s research group for specimen collection and identification, and especially Hong-man Chen who examined species information and its CO1 sequence. We thank Dong Wang, Chun-Yan Yang, Kong-Wah Sing, and Elizabeth Georgian for reviewing the manuscript. This work was supported by the Ministry of Science and Technology of China (MOST no. 2012FY110800 to W.W.) and the National Natural Science Foundation of China (NSFC no. 31090251 to Y.Z.). Raw data from next-generation sequencing is available at SRA (http://www.ncbi.nlm.nih.gov/sra) under accession number SRP090718.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Zhi Wang or Ya-Ping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Chen, X. et al. (2018). Capture Hybridization of Long-Range DNA Fragments for High-Throughput Sequencing. In: Huang, T. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 1754. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7717-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7717-8_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7716-1

  • Online ISBN: 978-1-4939-7717-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics