Skip to main content

Absolute Regulatory Small Noncoding RNA Concentration and Decay Rates Measurements in Escherichia coli

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1737))

Abstract

Regulation of RNA turnover is of utmost importance for controlling the concentration of transcripts and consequently cellular protein levels. Among the processes controlling RNA decay, small noncoding regulatory RNAs (sRNAs) have recently emerged as major new players. In this chapter, we describe and discuss protocols that can be used to measure sRNA concentration in vivo and to assess sRNA decay rates in Gram-negative bacteria. Precisely, we focus our analyses on the Escherichia coli Gram-negative bacterium as a model. The information described in this chapter provides a guideline to help develop a protocol in order to assess these important parameters and to identify RNA-processing enzymes involved in sRNA degradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ncRNA:

Noncoding RNA

nt:

Nucleotide

NTD/CTD:

N-terminal/C-terminal domain

PAGE:

PolyAcrylamide gel electrophoresis

PAP:

Poly(A) polymerase

PNPase:

Polynucleotide phosphorylase

RNAP:

RNA polymerase

RNAse:

Ribonuclease

sRNA:

Small RNA

ss/ds:

Single/double stranded

Tm :

Melting temperature

References

  1. Hui MP, Foley PL, Belasco JG (2014) Messenger RNA degradation in bacterial cells. Annu Rev Genet 48:537–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorna MW, Carpousis AJ, Luisi BF (2011) From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 45:105–145

    Article  PubMed  Google Scholar 

  3. Taghbalout A, Yang Q, Arluison V (2014) The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network. Biochem J 458:11–22

    Article  CAS  PubMed  Google Scholar 

  4. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 107:9602–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10:134–139

    Article  CAS  PubMed  Google Scholar 

  6. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikeda Y, Yagi M, Morita T, Aiba H (2011) Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol Microbiol 79:419–432

    Article  CAS  PubMed  Google Scholar 

  8. Mohanty BK, Maples VF, Kushner SR (2004) The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 54:905–920

    Article  CAS  PubMed  Google Scholar 

  9. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andrade JM, Pobre V, Matos AM, Arraiano CM (2012) The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 18:844–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saramago M, Barria C, Dos Santos RF, Silva IJ, Pobre V, Domingues S, Andrade JM, Viegas SC, Arraiano CM (2014) The role of RNases in the regulation of small RNAs. Curr Opin Microbiol 18:105–115

    Article  CAS  PubMed  Google Scholar 

  12. Andrade JM, Arraiano CM (2008) PNPase is a key player in the regulation of small RNAs that control the expression of outer membrane proteins. RNA 14:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Viegas SC, Arraiano CM (2008) Regulating the regulators: how ribonucleases dictate the rules in the control of small non-coding RNAs. RNA Biol 5:230–243

    Article  CAS  PubMed  Google Scholar 

  14. Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Viegas SC, Silva IJ, Saramago M, Domingues S, Arraiano CM (2011) Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res 39:2918–2930

    Article  CAS  PubMed  Google Scholar 

  16. Marujo PE, Hajnsdorf E, Le Derout J, Andrade R, Arraiano CM, Regnier P (2000) RNase II removes the oligo(A) tails that destabilize the rpsO mRNA of Escherichia coli. RNA 6:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reichenbach B, Maes A, Kalamorz F, Hajnsdorf E, Gorke B (2008) The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res 36:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sledjeski DD, Whitman C, Zhang A (2001) HFq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183:1997–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Lay N, Schu DJ, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 288:7996–8003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12:2770–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khemici V, Poljak L, Luisi BF, Carpousis AJ (2008) The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 70:799–813

    CAS  PubMed  Google Scholar 

  22. Kuwano M, Ono M, Endo H, Hori K, Nakamura K, Hirota Y, Ohnishi Y (1977) Gene affecting longevity of messenger RNA: a mutant of Escherichia Coli with altered mRNA stability. Mol Gen Genet 154:279–285

    Article  CAS  PubMed  Google Scholar 

  23. Ono M, Kuwano M (1979) A conditional lethal mutation in an Escherichia Coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol 129:343–357

    Article  CAS  PubMed  Google Scholar 

  24. McDowall KJ, Hernandez RG, Lin Chao S, Cohen SN (1993) The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J Bacteriol 175:4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kido M, Yamanaka K, Mitani T, Niki H, Ogura T, Hiraga S (1996) RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J Bacteriol 178:3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ow MC, Kushner SR (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16:1102–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anupama K, Leela JK, Gowrishankar J (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82:1330–1348

    Article  CAS  PubMed  Google Scholar 

  28. Jain C, Belasco JG (1995) RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia Coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev 9:84–96

    Article  CAS  PubMed  Google Scholar 

  29. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19:2176–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morita T, Kawamoto H, Mizota T, Inada T, Aiba H (2004) Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol 54:1063–1075

    Article  CAS  PubMed  Google Scholar 

  31. Mackie GA (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11:45–57

    Article  CAS  PubMed  Google Scholar 

  32. Garrey SM, Mackie GA (2011) Roles of the 5′-phosphate sensor domain in RNase E. Mol Microbiol 80:1613–1624

    Article  CAS  PubMed  Google Scholar 

  33. Regnier P, Hajnsdorf E (1991) Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. J Mol Biol 217:283–292

    Article  CAS  PubMed  Google Scholar 

  34. Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A 83:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yancey SD, Kushner SR (1990) Isolation and characterization of a new temperature-sensitive polynucleotide phosphorylase mutation in Escherichia coli K-12. Biochimie 72:835–843

    Article  CAS  PubMed  Google Scholar 

  36. Andrade JM, Hajnsdorf E, Regnier P, Arraiano CM (2009) The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen AA, Eriksen M, Gilany K, Udesen C, Franch T, Petersen C, Valentin-Hansen P (2005) Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol Microbiol 58:1421–1429

    Article  CAS  PubMed  Google Scholar 

  38. Okello JB, Rodriguez L, Poinar D, Bos K, Okwi AL, Bimenya GS, Sewankambo NK, Henry KR, Kuch M, Poinar HN (2010) Quantitative assessment of the sensitivity of various commercial reverse transcriptases based on armored HIV RNA. PLoS One 5:e13931

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stahlberg A, Kubista M, Pfaffl M (2004) Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50:1678–1680

    Article  CAS  PubMed  Google Scholar 

  40. Plumbridge JA, Dondon J, Nakamura Y, Grunberg-Manago M (1985) Effect of NusA protein on expression of the nusA, infB operon in E. coli. Nucleic Acids Res 13:3371–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hajnsdorf E, Steier O, Coscoy L, Teysset L, Regnier P (1994) Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia oli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J 13:3368–3377

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ziolkowska K, Derreumaux P, Folichon M, Pellegrini O, Regnier P, Boni IV, Hajnsdorf E (2006) Hfq variant with altered RNA binding functions. Nucleic Acids Res 34:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arraiano CM, Yancey SD, Kushner SR (1988) Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia oli K-12. J Bacteriol 170:4625–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hajnsdorf E, Braun F, Haugel-Nielsen J, Regnier P (1995) Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci U S A 92:3973–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nogueira T, de Smit M, Graffe M, Springer M (2001) The relationship between translational control and mRNA degradation for the Escherichia coli threonyl-tRNA synthetase gene. J Mol Biol 310:709–722

    Article  CAS  PubMed  Google Scholar 

  46. Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:4620–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu F, Taghbalout A (2013) Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J Biol Chem 288:7241–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS, CEA, and University Paris Diderot. We are particularly grateful to Bastien Cayrol (INRA/CIRAD) for his help in preparing this manuscript, and to Richard Lease (Ohio State Univ.) and Daniele Joseleau-Petit (Univ. Paris Diderot) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Busi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Busi, F., Arluison, V., Régnier, P. (2018). Absolute Regulatory Small Noncoding RNA Concentration and Decay Rates Measurements in Escherichia coli . In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics