Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Here we present a method for a mobile point-of-care (POC) testing of urinary albumin concentration, a biomarker of kidney damage and cardiovascular disease. The self-testing strips are meant to be interpreted by means of a smartphone application. The limits of detection range from 0.15 to 0.30 g/L urinary albumin, though results below 0.10 g/L are presented in a quantitative manner and estimates larger than this threshold are shown as categorical variables in a qualitative manner for increasing urinary albumin concentrations. Calibrated once under standard conditions, the app enables the user to capture problem samples and calculate the corresponding concentration. Negative and positive findings must be interpreted, taking into account the inherent limitations of the method, and professional health advice must be requested for diagnostic considerations. Acknowledgment of the association between early life nutrition and long-term renal health and the adoption of preventive strategies targeting high-risk groups is key for the reduction of the burden of chronic kidney disease on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bello A, Tonelli M, Jager K (2015) Epidemiology of kidney disease. In: Turner NN, Lameire N, Goldsmith DJ, Winearls CG, Himmelfarb J, Remuzzi G, Bennet WG, de Broe ME, Chapman JR, Covic A, Jha V, Sheerin N, Unwin R, Woolf A (eds) Oxford textbook of clinical nephrology, 4th edn. Oxford University Press, UK, pp 3–19. ISBN-10: 0199592543

    Chapter  Google Scholar 

  2. Levey AS, Stevens LA, Coresh J (2009) Conceptual model of CKD: applications and implications. Am J Kidney Dis 53(3 Suppl 3):S4–16

    Article  PubMed  Google Scholar 

  3. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K et al (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 80(1):17–28. https://doi.org/10.1038/ki.2010.483

    Article  PubMed  Google Scholar 

  4. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375(9731):2073–2081

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382(9889):339–352

    Article  PubMed  Google Scholar 

  6. Group KDIGOKCW (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3. http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf

  7. Zhang QL, Rothenbacher D (2008) Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health 8:117. https://doi.org/10.1186/1471-2458-8-117

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lameire N, Jager K, Van Biesen W, de Bacquer D, Vanholder R (2005) Chronic kidney disease: a European perspective. Kidney Int Suppl (99):S30–S38. DOI: https://doi.org/10.1111/j.1523-1755.2005.09907.x

  9. Silbiger SR, Neugarten J (2003) The role of gender in the progression of renal disease. Adv Ren Replace Ther 10:3–14

    Article  PubMed  Google Scholar 

  10. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272

    Article  PubMed  Google Scholar 

  11. Zoccali C, Kramer A, Jager KJ (2010) Epidemiology of CKD in Europe: an uncertain scenario. Nephrol Dial Transplant 25:1731–1733

    Article  PubMed  Google Scholar 

  12. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS et al (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One 11(7):e0158765. https://doi.org/10.1371/journal.pone.0158765

  13. Correa-Rotter R, Naicker S, Katz IJ, Agarwal SK, Herrera Valdes R, Kaseje D et al (2004) Demographic and epidemiologic transition in the developing world: role of albuminuria in the early diagnosis and prevention of renal and cardiovascular disease. Kidney Int Suppl 92:S32–S37. https://doi.org/10.1111/j.1523-1755.2004.09208.x

    Article  Google Scholar 

  14. The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1990 and Projected to 2020 (1996) Harvard School of Public Health on behalf of the World Health Organization and the World Bank, Cambridge. http://apps.who.int/iris/bitstream/10665/41864/1/0965546608_eng.pdf

  15. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2095–2128

    Article  PubMed  Google Scholar 

  16. World Health Organization W (2016) Global Health Estimates 2015: disease burden by cause, age, sex, by country and by region, 2000–2015 - global summary estimates. www.who.int/healthinfo/global_burden_disease/estimates/en/index2.html

  17. Schoolwerth AC, Engelgau MM, Rufo KH, Vinicor F, Hostetter TH, Chianchiano D et al (2006) Chronic kidney disease: a public health problem that needs a public health action plan. Prev Chronic Dis 3(2):A57

    PubMed  PubMed Central  Google Scholar 

  18. Ayodele OE, Alebiosu CO (2010) Burden of chronic kidney disease: an international perspective. Adv Chronic Kidney Dis 17:215–224

    Article  PubMed  Google Scholar 

  19. Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Kottgen A, Levey AS et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382(9887):158–169

    Article  PubMed  Google Scholar 

  20. Levey AS, Schoolwerth AC, Burrows NR, Williams DE, Stith KR, McClellan W (2009) Comprehensive public health strategies for preventing the development, progression, and complications of CKD: report of an expert panel convened by the Centers for Disease Control and Prevention. Am J Kidney Dis 53:522–535

    Article  PubMed  Google Scholar 

  21. Yim HE, Yoo KH (2015) Early life obesity and chronic kidney disease in later life. Pediatr Nephrol 30:1255–1263

    Article  PubMed  Google Scholar 

  22. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE et al (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382(9888):273–283

    Google Scholar 

  23. Wouters OJ, O'Donoghue DJ, Ritchie J, Kanavos PG, Narva AS (2015) Early chronic kidney disease: diagnosis, management and models of care. Nat Rev Nephrol 11:491–502

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilson JMG, Jungner G (1968) Principles and practice of screening for disease. Public health papers no. 34. World Health Organization, Geneva. http://apps.who.int/iris/bitstream/10665/37650/17/WHO_PHP_34.pdf

    Google Scholar 

  25. Remuzzi G, Benigni A, Finkelstein FO, Grunfeld JP, Joly D, Katz I et al (2013) Kidney failure: aims for the next 10 years and barriers to success. Lancet 382(9889):353–362

    Article  PubMed  Google Scholar 

  26. Salekin A, Stankovic J (2016) Detection of chronic kidney disease and selecting important predictive attributes. In: 2016 I.E. international conference on healthcare informatics (ICHI), 4–7 Oct 2016, pp 262–270. doi:https://doi.org/10.1109/ICHI.2016.36

  27. Viswanathan G, Upadhyay A (2011) Assessment of proteinuria. Adv Chronic Kidney Dis 18:243–248

    Article  PubMed  Google Scholar 

  28. Polkinghorne KR (2006) Detection and measurement of urinary protein. Curr Opin Nephrol Hypertens 15:625–630

    Article  CAS  PubMed  Google Scholar 

  29. Verhave JC, Gansevoort RT, Hillege HL, Bakker SJ, De Zeeuw D, de Jong PE (2004) An elevated urinary albumin excretion predicts de novo development of renal function impairment in the general population. Kidney Int Suppl (92):S18–S21. doi:https://doi.org/10.1111/j.1523-1755.2004.09205.x

  30. Lopez-Giacoman S, Madero M (2015) Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J Nephrol 4:57–73

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thorp ML, Smith DH, Johnson ES, Vupputuri S, Weiss JW, Petrik AF et al (2012) Proteinuria among patients with chronic kidney disease: a performance measure for improving patient outcomes. Jt Comm J Qual Patient Saf 38:277–282

    Article  PubMed  Google Scholar 

  32. Stoycheff N, Pandya K, Okparavero A, Schiff A, Levey AS, Greene T et al (2011) Early change in proteinuria as a surrogate outcome in kidney disease progression: a systematic review of previous analyses and creation of a patient-level pooled dataset. Nephrol Dial Transplant 26:848–857

    Article  PubMed  Google Scholar 

  33. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84:487–515

    Article  CAS  PubMed  Google Scholar 

  34. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensor Actuat B-Chem 196:156–160

    Article  CAS  Google Scholar 

  35. Yetisen AK, Butt H, Volpatti LR, Pavlichenko I, Humar M, Kwok SJ et al (2016) Photonic hydrogel sensors. Biotechnol Adv 34:250–271. https://doi.org/10.1016/j.biotechadv.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  36. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ et al (2015) Photonic nanosensor for colorimetric detection of metal ions. Anal Chem 87:5101–5108

    Google Scholar 

  37. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt H et al (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14:3587–3593

    Google Scholar 

  38. Hurtado JL, Lowe CR (2014) Ammonia-sensitive photonic structures fabricated in Nafion membranes by laser ablation. ACS Appl Mater Interfaces 6:8903–8908

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Hurtado JL, Davidson CA, Blyth J, Lowe CR (2010) Holographic detection of hydrocarbon gases and other volatile organic compounds. Langmuir 26:15694–15699

    Article  CAS  PubMed  Google Scholar 

  40. Martinez-Hurtado JL, Akram MS, Yetisen AK (2013) Iridescence in meat caused by surface gratings. Foods 2:499–506

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zawadzka M, Mikulchyk T, Cody D, Martin S, Yetisen AK, Martinez-Hurtado JL et al (2016) Photonic materials for holographic sensing. In: Serpe MJ, Kang Y, Zhang QM (eds) Photonic materials for sensing, biosensing and display devices. Springer International Publishing, Cham, pp 315–359. ISBN-10: 3319249886

    Chapter  Google Scholar 

  42. Martinez Hurtado JL, Lowe CR (2015) An integrated photonic-diffusion model for holographic sensors in polymeric matrices. J Membr Sci 495:14–19. https://doi.org/10.1016/j.memsci.2015.07.064

    Article  CAS  Google Scholar 

  43. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14:833–840

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Hurtado JL, Yetisen AK, Yun SH (2017) Multiplex smartphone diagnostics. Methods Mol Biol 1546:295–302

    Article  CAS  PubMed  Google Scholar 

  45. Free AH, Rupe CO, Metzler I (1957) Studies with a new colorimetric test for proteinuria. Clin Chem 3:716–727

    CAS  PubMed  Google Scholar 

  46. Giordano AS, Allen N, Winstead M, Payton MA (1957) A new colorimetric test for albuminuria. Am J Med Technol 23:216–219

    CAS  PubMed  Google Scholar 

  47. Longfield GM, Holland DE, Lake AJ, Knights EM Jr (1960) Comparison studies of simplified tests for glucosuria and proteinuria. Tech Bull Regist Med Technol 30:76–78

    CAS  PubMed  Google Scholar 

  48. Pugia MJ, Lott JA, Profitt JA, Cast TK (1999) High-sensitivity dye binding assay for albumin in urine. J Clin Lab Anal 13:180–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Kidney Health Australia for providing the KidneyCheck test strips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Martinez-Hurtado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matías-García, P.R., Martinez-Hurtado, J.L. (2018). Kidney Smartphone Diagnostics. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics