Skip to main content

Assessing the Influence of a Protease in Cell Migration Using the Barrier-Migration Assay

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

  • 1830 Accesses

Abstract

Proteases play crucial roles in all steps of tumor progression including cancer cell migration. In fact, uncontrolled proteolytic activity could lead to the degradation of different components of the extracellular matrix which facilitates dissemination of tumor cells. However, numerous studies have revealed that proteases may also exert tumor-protective actions which could impede progression of malignant cells. Consequently, it is crucial to distinguish those situations in which proteases promote tumor growth from those in which exhibit tumor-suppressive effects. In this regard, analysis of the influence of a particular protease on the capacity of a cell line to migrate can be employed as an approach to better understand its involvement in tumorigenesis. Different experimental designs have been developed to investigate cell migration. Herein, we describe a barrier assay to monitor cell migration, which overcomes some disadvantages of traditional methods such as the Boyden chamber or the wound healing assays. The version of the barrier assay explained in this chapter allows to examine cell migration through the analysis of the closure of a premade 500 μm wound. This method also facilitates comparison between two different situations in a given cell line (i.e., gene up- or downregulation) in the same assay and under the same conditions. Additionally, migration can be monitored and measured using a time lapse microscope which facilitates further analysis through different softwares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keely P, Nain A (2015) Capturing relevant extracellular matrices for investigating cell migration. F1000Res 4:pii: F1000 Faculty Rev-1408. 10.12688/f1000research.6623.1

    Article  Google Scholar 

  2. Durbec P, Franceschini I, Lazarini F et al (2008) In vitro migration assays of neural stem cells. Methods Mol Biol 438:213–225. https://doi.org/10.1007/978-1-59745-133-8_18

    Article  CAS  PubMed  Google Scholar 

  3. Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cell Mol Life Sci 70(8):1335–1356. https://doi.org/10.1007/s00018-012-1115-1

    Article  CAS  PubMed  Google Scholar 

  4. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773(5):642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  5. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21(4):228–237. https://doi.org/10.1016/j.tcb.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Fischer A (1946) Mechanism of the proteolytic activity of malignant tissue cells. Nature 157:442

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7(10):800–808. https://doi.org/10.1038/nrc2228

    Article  CAS  PubMed  Google Scholar 

  9. Sato H, Takino T (2010) Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Sci 101(4):843–847. https://doi.org/10.1111/j.1349-7006.2010.01498.x

    Article  CAS  PubMed  Google Scholar 

  10. Stracke JO, Hutton M, Stewart M et al (2000) Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme. J Biol Chem 275(20):14809–14816

    Article  CAS  PubMed  Google Scholar 

  11. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masui T, Hosotani R, Tsuji S et al (2001) Expression of METH-1 and METH-2 in pancreatic cancer. Clin Cancer Res 7(11):3437–3443

    CAS  PubMed  Google Scholar 

  13. Cal S, Lopez-Otin C (2015) ADAMTS proteases and cancer. Matrix Biol 44-46:77–85. https://doi.org/10.1016/j.matbio.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  14. Kelwick R, Desanlis I, Wheeler GN et al (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113. https://doi.org/10.1186/s13059-015-0676-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esselens C, Malapeira J, Colome N et al (2010) The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem 285(4):2463–2473. https://doi.org/10.1074/jbc.M109.055129

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Manzaneque JC, Carpizo D, Plaza-Calonge Mdel C et al (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int J Biochem Cell Biol 41(4):800–810. https://doi.org/10.1016/j.biocel.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  17. Fontanil T, Rua S, Llamazares M et al (2014) Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget 5(5):1253–1264. 10.18632/oncotarget.1690

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kramer N, Walzl A, Unger C et al (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24. https://doi.org/10.1016/j.mrrev.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  19. Sun M, Zaman MH (2017) Modeling, signaling and cytoskeleton dynamics: integrated modeling-experimental frameworks in cell migration. Wiley Interdiscip Rev Syst Biol Med 9(1). https://doi.org/10.1002/wsbm.1365

  20. Yarrow JC, Perlman ZE, Westwood NJ et al (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21. https://doi.org/10.1186/1472-6750-4-21

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zorn ML, Marel AK, Segerer FJ et al (2015) Phenomenological approaches to collective behavior in epithelial cell migration. Biochim Biophys Acta 1853(11 Pt B):3143–3152. https://doi.org/10.1016/j.bbamcr.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  22. Van Horssen R, ten Hagen TL (2011) Crossing barriers: the new dimension of 2D cell migration assays. J Cell Physiol 226(1):288–290. https://doi.org/10.1002/jcp.22330

    Article  PubMed  Google Scholar 

  23. Kroening S, Goppelt-Struebe M (2010) Analysis of matrix-dependent cell migration with a barrier migration assay. Sci Signal 3(126):pl1. https://doi.org/10.1126/scisignal.3126pl1

    Article  PubMed  Google Scholar 

  24. Ashby WJ, Zijlstra A (2012) Established and novel methods of interrogating two-dimensional cell migration. Integr Biol (Camb) 4(11):1338–1350. https://doi.org/10.1039/c2ib20154b

    Article  CAS  Google Scholar 

  25. Lobastova L, Kraus D, Glassmann A et al (2017) Collective cell migration of thyroid carcinoma cells: a beneficial ability to override unfavourable substrates. Cell Oncol (Dordr) 40(1):63–76. https://doi.org/10.1007/s13402-016-0305-5

    Article  CAS  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  27. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1–A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santiago Cal or Álvaro J. Obaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fontanil, T., Mohamedi, Y., Cal, S., Obaya, Á.J. (2018). Assessing the Influence of a Protease in Cell Migration Using the Barrier-Migration Assay. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics