Skip to main content

Study of Plasmid-Mediated Quinolone Resistance in Bacteria

  • Protocol
  • First Online:
DNA Topoisomerases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1703))

Abstract

Plasmid-mediated quinolone resistance (PMQR) involves genes for proteins that protect the quinolone targets, an enzyme that inactivates certain quinolones as well as aminoglycosides, and pumps that efflux quinolones. Quinolone susceptibility is reduced by these mechanisms but not to the level of clinical resistance unless chromosomal mutations are also present. PCR primers and conditions for PMQR gene detection are described as well as how to establish a plasmid location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacoby GA, Griffin CM, Hooper DC (2011) Citrobacter spp. as a source of qnrB alleles. Antimicrob Agents Chemother 55(11):4979–4984. https://doi.org/10.1128/AAC.05187-11. AAC.05187-11 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ribeiro TG, Novais A, Branquinho R, Machado E, Peixe L (2015) Phylogeny and comparative genomics unveil independent diversification trajectories of qnrB and genetic platforms within particular Citrobacter species. Antimicrob Agents Chemother 59(10):5951–5958. https://doi.org/10.1128/AAC.00027-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, Huovinen P, Siitonen A, Hakanen AJ, Piddock LJ (2009) Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrob Agents Chemother 53(9):3832–3836. https://doi.org/10.1128/AAC.00121-09. AAC.00121-09 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez-Martinez JM, Lopez-Cerero L, Diaz-de-Alba P, Chamizo-Lopez FJ, Polo-Padillo J, Pascual A (2016) Assessment of a phenotypic algorithm to detect plasmid-mediated quinolone resistance in Enterobacteriaceae. J Antimicrob Chemother 71(3):845–847. https://doi.org/10.1093/jac/dkv392

    Article  CAS  PubMed  Google Scholar 

  5. Zhao X, Xu X, Zhu D, Ye X, Wang M (2010) Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. Diagn Microbiol Infect Dis 67:110–113. https://doi.org/10.1016/j.diagmicrobio.2009.12.018. S0732-8893(09)00509-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Fonseca EL, Vicente AC (2013) Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. J Med Microbiol 62(Pt 10):1628–1630. https://doi.org/10.1099/jmm.0.062661-0

    Article  PubMed  Google Scholar 

  7. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22(4):664–689. https://doi.org/10.1128/CMR.00016-09. 22/4/664 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poirel L, Cattoir V, Nordmann P (2012) Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol 3:24. https://doi.org/10.3389/fmicb.2012.00024

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ruiz J, Pons MJ, Gomes C (2012) Transferable mechanisms of quinolone resistance. Int J Antimicrob Agents 40(3):196–203. https://doi.org/10.1016/j.ijantimicag.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  10. Jacoby GA, Strahilevitz J, Hooper DC (2014) Plasmid-mediated quinolone resistance. Microbiol Spectr 2(5). https://doi.org/10.1128/microbiolspec.PLAS-0006-2013.PLAS-0006-2013

  11. Jacoby GA, Gacharna N, Black TA, Miller GH, Hooper DC (2009) Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob Agents Chemother 53(4):1665–1666. https://doi.org/10.1128/AAC.01447-08. AAC.01447-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC (2009) Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 53(2):639–645. https://doi.org/10.1128/AAC.01051-08. AAC.01051-08 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Cavaco LM, Hasman H, Xia S, Aarestrup FM (2009) qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 53(2):603–608. https://doi.org/10.1128/AAC.00997-08. AAC.00997-08 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6′)Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50:3953–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC (2009) oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 53(8):3582–3584. https://doi.org/10.1128/AAC.01574-08. AAC.01574-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wareham DW, Umoren I, Khanna P, Gordon NC (2010) Allele-specific polymerase chain reaction (PCR) for rapid detection of the aac(6′)-Ib-cr quinolone resistance gene. Int J Antimicrob Agents 36(5):476–477. https://doi.org/10.1016/j.ijantimicag.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  17. Warburg G, Korem M, Robicsek A, Engelstein D, Moses AE, Block C, Strahilevitz J (2009) Changes in aac(6′)-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991 through 2005. Antimicrob Agents Chemother 53(3):1268–1270. https://doi.org/10.1128/AAC.01300-08. AAC.01300-08 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Hidalgo-Grass C, Strahilevitz J (2010) High-resolution melt curve analysis for identification of single nucleotide mutations in the quinolone resistance gene aac(6′)-Ib-cr. Antimicrob Agents Chemother 54(8):3509–3511. https://doi.org/10.1128/AAC.00485-10. AAC.00485-10 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bell JM, Turnidge JD, Andersson P (2010) aac(6′)-Ib-cr genotyping by simultaneous high-resolution melting analyses of an unlabeled probe and full-length amplicon. Antimicrob Agents Chemother 54(3):1378–1380. https://doi.org/10.1128/AAC.01476-09. AAC.01476-09 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Guillard T, Duval V, Moret H, Brasme L, Vernet-Garnier V, de Champs C (2010) Rapid detection of aac(6′)-Ib-cr quinolone resistance gene by pyrosequencing. J Clin Microbiol 48(1):286–289. https://doi.org/10.1128/JCM.01498-09. JCM.01498-09 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Guillard T, Fontaine N, Limelette A, Lebreil AL, Madoux J, de Champs C (2013) A simplified and cost-effective method combining real-time PCR and pyrosequencing for detection of aac(6′)-Ib-cr gene. J Microbiol Methods 95(2):268–271. https://doi.org/10.1016/j.mimet.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  22. Wachino J, Yamane K, Arakawa Y (2011) Practical disk-based method for detection of Escherichia coli clinical isolates producing the fluoroquinolone-modifying enzyme AAC(6′)-Ib-cr. J Clin Microbiol 49(6):2378–2379. https://doi.org/10.1128/JCM.00278-11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pardo CA, Tan RN, Hennequin C, Beyrouthy R, Bonnet R, Robin F (2016) Rapid detection of AAC(6′)-Ib-cr production using a MALDI-TOF MS strategy. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-016-2762-1

  24. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW (2013) Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol 62(Pt 12):1823–1827. https://doi.org/10.1099/jmm.0.064428-0

    Article  CAS  PubMed  Google Scholar 

  25. Guillard T, Moret H, Brasme L, Carlier A, Vernet-Garnier V, Cambau E, de Champs C (2011) Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis 70(2):253–259. https://doi.org/10.1016/j.diagmicrobio.2011.01.004. S0732-8893(11)00010-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Jacoby GA, Han P (1996) Detection of extended-spectrum ß-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34(4):908–911

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martínez-Martínez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351(9105):797–799

    Article  PubMed  Google Scholar 

  28. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC (2006) qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother 50(4):1178–1182. https://doi.org/10.1128/AAC.50.4.1178-1182.2006. 50/4/1178 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC (2006) Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis 43(3):297–304

    Article  CAS  PubMed  Google Scholar 

  30. Clinical and Laboratory Standards Institute Institute (2016) Performance standards for antimicrobial susceptibility testing; 26th informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  31. Barton BM, Harding GP, Zuccarelli AJ (1995) A general method for detecting and sizing large plasmids. Anal Biochem 226(2):235–240

    Article  CAS  PubMed  Google Scholar 

  32. Liu SL, Hessel A, Sanderson KE (1993) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A 90(14):6874–6878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kehrenberg C, Friederichs S, de Jong A, Schwarz S (2008) Novel variant of the qnrB gene, qnrB12, in Citrobacter werkmanii. Antimicrob Agents Chemother 52(3):1206–1207

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi S, Nagano Y (1984) Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. J Clin Microbiol 20(4):608–613

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228. https://doi.org/10.1016/j.mimet.2005.03.018. S0167-7012(05)00113-2 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Jacoby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacoby, G.A. (2018). Study of Plasmid-Mediated Quinolone Resistance in Bacteria. In: Drolet, M. (eds) DNA Topoisomerases. Methods in Molecular Biology, vol 1703. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7459-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7459-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7458-0

  • Online ISBN: 978-1-4939-7459-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics