Skip to main content

Construction of High-Quality Camel Immune Antibody Libraries

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 107–108 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 108 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  2. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally-occurring antibodies devoid of light-chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    Article  CAS  PubMed  Google Scholar 

  4. Dmitriev OY, Lutsenko S, Muyldermans S (2016) Nanobodies as probes for protein dynamics in vitro and in cells. J Biol Chem 291:3767–3775

    Article  CAS  PubMed  Google Scholar 

  5. Engler C, Gruetzner R, Kandzia R, Marillonet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernard P, Gabant P, Bahassi E, Couturier M (1994) Positive-selectionvectors using the F plasmid ccdB killer gene. Gene 148:71–74

    Article  CAS  PubMed  Google Scholar 

  7. Vincke C, Gutiérrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S (2012) Chapter 8: Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. In: Chames P (ed) Antibody engineering: methods and protocols, second edition. Methods in molecular biology, vol 917. Humana, Louisville, KY, pp 145–176

    Chapter  Google Scholar 

  8. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9:674–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. Eur Mol Biol Organ J 19:921–930

    Article  CAS  Google Scholar 

  10. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S (2010) A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol 184:5696–5704

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Muyldermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romão, E., Poignavent, V., Vincke, C., Ritzenthaler, C., Muyldermans, S., Monsion, B. (2018). Construction of High-Quality Camel Immune Antibody Libraries. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics