Skip to main content

Isolation of the Plant Exocyst Complex

  • Protocol
  • First Online:
Book cover Plant Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1662))

Abstract

The exocyst, conserved from yeast to plants to mammals, is a hetero-octameric complex that mediates tethering of secretory vesicles to designated sites on the plasma membrane during polarized exocytosis. Because structural studies of the intact exocyst complex have been greatly limited by the low yields of purified proteins, many aspects of the exocyst functions remain poorly understood. Here, we present the protocols for the isolation and purification of the recombinant and the native plant exocyst complex. Given the known diversification of the exocyst subunits in plants, our protocols will likely open the possibility of unraveling the functional significance of these subunits in the context of the fully assembled exocyst complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13(7):898–907. doi:10.1111/j.1600-0854.2012.01353.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290(1):C11–C26. doi:10.1152/ajpcell.00293.2005

    Article  CAS  PubMed  Google Scholar 

  3. Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156. doi:10.1146/annurev.cellbio.042308.113327

    Article  CAS  PubMed  Google Scholar 

  4. Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18(4):1071–1080. doi:10.1093/emboj/18.4.1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682. doi:10.1016/j.devcel.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  6. TerBush DR, Maurice T, Roth D, Novick P (1996) The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15(23):6483–6494

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sivaram MV, Saporita JA, Furgason ML, Boettcher AJ, Munson M (2005) Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44(16):6302–6311. doi:10.1021/bi048008z

    Article  CAS  PubMed  Google Scholar 

  8. Laufman O, Hong W, Lev S (2013) The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126(Pt 6):1506–1516. doi:10.1242/jcs.122101

    Article  CAS  PubMed  Google Scholar 

  9. Morgera F, Sallah MR, Dubuke ML, Gandhi P, Brewer DN, Carr CM, Munson M (2012) Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol Biol Cell 23(2):337–346. doi:10.1091/mbc.E11-08-0670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin Y, Sultana A, Gandhi P, Franklin E, Hamamoto S, Khan AR, Munson M, Schekman R, Weisman LS (2011) Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 21(6):1156–1170. doi:10.1016/j.devcel.2011.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen D, Yuan H, Hutagalung A, Verma A, Kummel D, Wu X, Reinisch K, McNew JA, Novick P (2013) The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J Cell Biol 202(3):509–526. doi:10.1083/jcb.201211148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He B, Xi F, Zhang X, Zhang J, Guo W (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26(18):4053–4065. doi:10.1038/sj.emboj.7601834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, Guo W (2008) Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol 180(1):145–158. doi:10.1083/jcb.200704128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baek K, Knodler A, Lee SH, Zhang X, Orlando K, Zhang J, Foskett TJ, Guo W, Dominguez R (2010) Structure-function study of the N-terminal domain of exocyst subunit Sec3. J Biol Chem 285(14):10424–10433. doi:10.1074/jbc.M109.096966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9(6):579–588. doi:10.1016/j.pbi.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  16. Zarsky V, Kulich I, Fendrych M, Pecenkova T (2013) Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol 16(6):726–733. doi:10.1016/j.pbi.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  17. Pecenkova T, Hala M, Kulich I, Kocourkova D, Drdova E, Fendrych M, Toupalova H, Zarsky V (2011) The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot 62(6):2107–2116. doi:10.1093/jxb/erq402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drdova EJ, Synek L, Pecenkova T, Hala M, Kulich I, Fowler JE, Murphy AS, Zarsky V (2013) The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J 73(5):709–719. doi:10.1111/tpj.12074

    Article  CAS  PubMed  Google Scholar 

  19. Cvrckova F, Grunt M, Bezvoda R, Hala M, Kulich I, Rawat A, Zarsky V (2012) Evolution of the land plant exocyst complexes. Front Plant Sci 3:159. doi:10.3389/fpls.2012.00159

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22(12):4009–4030. doi:10.1105/tpc.110.080697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding Y, Wang J, Chun Lai JH, Ling Chan VH, Wang X, Cai Y, Tan X, Bao Y, Xia J, Robinson DG, Jiang L (2014) Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 25(3):412–426. doi:10.1091/mbc.E13-10-0586

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin Y, Ding Y, Wang J, Shen J, Kung CH, Zhuang X, Cui Y, Yin Z, Xia Y, Lin H, Robinson DG, Jiang L (2015) Exocyst-positive organelles and autophagosomes are distinct organelles in plants. Plant Physiol 169(3):1917–1932. doi:10.1104/pp.15.00953

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Munson M, Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13(7):577–581. doi:10.1038/nsmb1097

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Brown MQ, van de Ven W, Zhang ZM, Wu B, Young MC, Synek L, Borchardt D, Harrison R, Pan S, Luo N, Huang YM, Ghang YJ, Ung N, Li R, Isley J, Morikis D, Song J, Guo W, Hooley RJ, Chang CE, Yang Z, Zarsky V, Muday GK, Hicks GR, Raikhel NV (2016) Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci U S A 113(1):E41–E50. doi:10.1073/pnas.1521248112

    Article  CAS  PubMed  Google Scholar 

  25. Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20(6):1111–1122

    Article  CAS  PubMed  Google Scholar 

  26. Heider MR, Gu M, Duffy CM, Mirza AM, Marcotte LL, Walls AC, Farrall N, Hakhverdyan Z, Field MC, Rout MP, Frost A, Munson M (2016) Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat Struct Mol Biol 23(1):59–66. doi:10.1038/nsmb.3146

    Article  CAS  PubMed  Google Scholar 

  27. Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Zarsky V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20(5):1330–1345. doi:10.1105/tpc.108.059105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Liwen Jiang for critical reading of the manuscript. This work was supported by the Direct Grant for Research from the Research Committee of the Chinese University of Hong Kong, China (Project No. 4053182) and Research Grants Council of Hong Kong (14105577, C4012-16E, C4011-14R and AoE/M-05/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Chun Yu Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Leung, K.P., Lau, W.C.Y. (2017). Isolation of the Plant Exocyst Complex. In: Jiang, L. (eds) Plant Protein Secretion. Methods in Molecular Biology, vol 1662. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7262-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7262-3_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7261-6

  • Online ISBN: 978-1-4939-7262-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics