Skip to main content

Discovering Selective Diguanylate Cyclase Inhibitors: From PleD to Discrimination of the Active Site of Cyclic-di-GMP Phosphodiesterases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

One of the most important signals involved in controlling biofilm formation is represented by the intracellular second messenger 3′,5′-cyclic diguanylic acid (c-di-GMP). Since the pathways involved in c-di-GMP biosynthesis and breakdown are found only in bacteria, targeting c-di-GMP metabolism represents an attractive strategy for the development of biofilm-disrupting drugs. Here, we present the workflow required to perform a structure-based design of inhibitors of diguanylate cyclases, the enzymes responsible for c-di-GMP biosynthesis. Downstream of the virtual screening process, detailed in the first part of the chapter, we report the step-by-step protocols required to test the positive hits in vitro and to validate their selectivity, thus minimizing possible off-target effects.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101(49):17084–17089. doi:10.1073/pnas.0406134101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wassmann P, Chan C, Paul R, Beck A, Heerklotz H, Jenal U, Schirmer T (2007) Structure of BeF3-modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15(8):915–927. doi:10.1016/j.str.2007.06.016

    Article  CAS  PubMed  Google Scholar 

  3. De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3):e67. doi:10.1371/journal.pbio.0060067

    Article  PubMed  PubMed Central  Google Scholar 

  4. De N, Navarro MV, Raghavan RV, Sondermann H (2009) Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J Mol Biol 393(3):619–633. doi: 10.1016/j.jmb.2009.08.030

    Google Scholar 

  5. Schirmer T (2016) C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation. J Mol Biol 428(19):3683–3701. doi:10.1016/j.jmb.2016.07.023

    Article  CAS  PubMed  Google Scholar 

  6. Giardina G, Paiardini A, Fernicola S, Franceschini S, Rinaldo S, Stelitano V, Cutruzzolà F (2013) Investigating the allosteric regulation of YfiN from Pseudomonas aeruginosa: clues from the structure of the catalytic domain. PLoS One 8(11):e81324. doi:10.1371/journal.pone.0081324

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tarnawski M, Barends TR, Schlichting I (2015) Structural analysis of an oxygen-regulated diguanylate cyclase. Acta Crystallogr D Biol Crystallogr 71(Pt 11):2158–2177. doi:10.1107/s139900471501545x

    Article  CAS  PubMed  Google Scholar 

  8. An DR, Im HN, Jang JY, Kim HS, Kim J, Yoon HJ, Hesek D, Lee M, Mobashery S, Kim SJ, Suh SW (2016) Structural basis of the heterodimer formation between cell shape-determining proteins Csd1 and Csd2 from Helicobacter pylori. PLoS One 11(10):e0164243. doi:10.1371/journal.pone.0164243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Astegno A, Capitani G, Dominici P (2015) Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochim Biophys Acta 1854(9):1229–1237. doi:10.1016/j.bbapap.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  10. Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW (2016) Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep 6:23748. doi:10.1038/srep23748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernicola S, Torquati I, Paiardini A, Giardina G, Rampioni G, Messina M, Leoni L, Del Bello F, Petrelli R, Rinaldo S, Cappellacci L, Cutruzzolà F (2015) Synthesis of triazole-linked analogues of c-di-GMP and their interactions with diguanylate cyclase. J Med Chem 58(20):8269–8284. doi:10.1021/acs.jmedchem.5b01184

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO (2013) Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2′-F-c-di-GMP. Bioorg Med Chem 21(14):4396–4404. doi:10.1016/j.bmc.2013.04.050

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Zhou J, Donaldson GP, Nakayama S, Yan L, Lam YF, Lee VT, Sintim HO (2011) Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J Am Chem Soc 133(24):9320–9330. doi:10.1021/ja1112029

    Article  CAS  PubMed  Google Scholar 

  14. Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ (2014) Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30(1):17–28. doi:10.1080/08927014.2013.832224

    Article  CAS  PubMed  Google Scholar 

  15. Fernicola S, Paiardini A, Giardina G, Rampioni G, Leoni L, Cutruzzolà F, Rinaldo S (2016) In silico discovery and in vitro validation of catechol-containing sulfonohydrazide compounds as potent inhibitors of the diguanylate cyclase PleD. J Bacteriol 198(1):147–156. doi:10.1128/jb.00742-15

    Article  CAS  Google Scholar 

  16. Deepthi A, Liew CW, Liang ZX, Swaminathan K, Lescar J (2014) Structure of a diguanylate cyclase from Thermotoga maritima: insights into activation, feedback inhibition and thermostability. PLoS One 9(10):e110912. doi:10.1371/journal.pone.0110912

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen MW, Kotaka M, Vonrhein C, Bricogne G, Rao F, Chuah ML, Svergun D, Schneider G, Liang ZX, Lescar J (2012) Structural insights into the regulatory mechanism of the response regulator RocR from Pseudomonas aeruginosa in cyclic Di-GMP signaling. J Bacteriol 194(18):4837–4846. doi:10.1128/JB.00560-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rao F, Yang Y, Qi Y, Liang ZX (2008) Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190(10):3622–3631. doi:10.1128/JB.00165-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stelitano V, Brandt A, Fernicola S, Franceschini S, Giardina G, Pica A, Rinaldo S, Sica F, Cutruzzolà F (2013) Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy. Nucleic Acids Res 41:e79. doi:10.1093/nar/gkt028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzolà F, Landini P (2013) The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97(16):7325–7336. doi:10.1007/s00253-013-4875-0

    Article  CAS  PubMed  Google Scholar 

  21. Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO (2016) Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 52(60):9327–9342. doi:10.1039/c6cc03439j

    Article  CAS  Google Scholar 

  22. Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56(10):5202–5211. doi:10.1128/aac.01396-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85(4):1095–1104. doi:10.1007/s00253-009-2199-x

    Article  CAS  PubMed  Google Scholar 

  24. Pawar SV, Messina M, Rinaldo S, Cutruzzolà F, Kaever V, Rampioni G, Leoni L (2016) Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. J Appl Microbiol 120(1):205–217. doi:10.1111/jam.12984

    Article  CAS  PubMed  Google Scholar 

  25. Groizeleau J, Rybtke M, Andersen JB, Berthelsen J, Liu Y, Yang L, Nielsen TE, Kaever V, Givskov M, Tolker-Nielsen T (2016) The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology 162(10):1797–1807. doi:10.1099/mic.0.000354

    Article  CAS  PubMed  Google Scholar 

  26. Kellenberger CA, Sales-Lee J, Pan Y, Gassaway MM, Herr AE, Hammond MC (2015) A minimalist biosensor: quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer. RNA Biol 12(11):1189–1197. doi:10.1080/15476286.2015.1062970

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie Q, Zhao F, Liu H, Shan Y, Liu F (2015) A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch. Anal Chim Acta 882:22–26. doi:10.1016/j.aca.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  28. Lieberman OJ, Orr MW, Wang Y, Lee VT (2014) High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 9(1):183–192. doi:10.1021/cb400485k

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  30. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321. doi:10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  32. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics Chapter 8:Unit 8 14. doi:10.1002/0471250953.bi0814s24

  33. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18(6):715–727. doi:10.1101/gad.28950/418/6/715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cutruzzolà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rinaldo, S., Giardina, G., Mantoni, F., Paiardini, A., Paone, A., Cutruzzolà, F. (2017). Discovering Selective Diguanylate Cyclase Inhibitors: From PleD to Discrimination of the Active Site of Cyclic-di-GMP Phosphodiesterases. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics