Skip to main content

Optical Control of Glutamate Receptors of the NMDA-Kind in Mammalian Neurons, with the Use of Photoswitchable Ligands

  • Protocol
  • First Online:
Book cover Biochemical Approaches for Glutamatergic Neurotransmission

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

N -Methyl- d -aspartate receptors (NMDAR) are members of the glutamate binding ligand-gated receptors. They are primarily found at excitatory synapses, essential for some of the most prominent forms of synaptic plasticity pertaining to learning and memory (Nabavi et al., 2014; Bliss and Lomo, 1973) and their dysfunction underlies diverse diseases (Newcomer et al., 2000; Burnashev and Szepetowski, 2015). By combining genetic manipulations of NMDAR subunits and synthetic chemical photoswitches, we have recently developed a family of light-gated, or photoswitchable, NMDA receptors to gate plasticity in vitro and in vivo. This approach—synthetic optogenetics (Berlin and Isacoff, 2017)—enables to confer remote, rapid, and reversible optical modulation of NMDA receptors of a particular subunit composition. This chapter describes the use of azobenzene-based tethered photoswitches and engineered NMDAR subunits to engender the NMDA-receptor light-sensitive; in cultured hippocampal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forne I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F (2012) Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 11(4):M111.012088

    Article  PubMed  CAS  Google Scholar 

  2. Schmid F-X (2001) Biological macromolecules: UV-visible spectrophotometry—eLS. John Wiley & Sons, Ltd, Hoboken, NJ

    Google Scholar 

  3. McBee JK, Kuksa V, Alvarez R, de Lera AR, Prezhdo O, Haeseleer F, Sokal I, Palczewski K (2000) Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry 39(37):11370–11380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kennis JT, Mathes T (2013) Molecular eyes: proteins that transform light into biological information. Interface Focus 3(5):20130005

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398

    Article  CAS  PubMed  Google Scholar 

  6. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18(9):1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  9. Hegemann P, Nagel G (2013) From channelrhodopsins to optogenetics. EMBO Mol Med 5(2):173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029

    Article  CAS  PubMed  Google Scholar 

  12. Scheib U, Stehfest K, Gee CE, Korschen HG, Fudim R, Oertner TG, Hegemann P (2015) The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8(389):rs8

    Article  PubMed  CAS  Google Scholar 

  13. Schroder-Lang S, Schwarzel M, Seifert R, Strunker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42

    Article  PubMed  CAS  Google Scholar 

  14. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760

    Article  CAS  PubMed  Google Scholar 

  17. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57(5):634–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, Tucciarone J, Selimbeyoglu A, Berndt A, Grosenick L, Zalocusky KA, Bernstein H, Swanson H, Perry C, Diester I, Boyce FM, Bass CE, Neve R, Huang ZJ, Deisseroth K (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11(7):763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papagiakoumou E, Anselmi F, Begue A, de Sars V, Gluckstad J, Isacoff EY, Emiliani V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7(10):848–854

    Article  CAS  PubMed  Google Scholar 

  21. Kim CK, Yang SJ, Pichamoorthy N, Young NP, Kauvar I, Jennings JH, Lerner TN, Berndt A, Lee SY, Ramakrishnan C, Davidson TJ, Inoue M, Bito H, Deisseroth K (2016) Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat Methods 13(4):325–328

    Article  PubMed  CAS  Google Scholar 

  22. Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsaki G, Cardin JA, Costa RM, Dan Y, Goda Y, Graybiel AM, Hausser M, Hegemann P, Huguenard JR, Insel TR, Janak PH, Johnston D, Josselyn SA, Koch C, Kreitzer AC, Luscher C, Malenka RC, Miesenbock G, Nagel G, Roska B, Schnitzer MJ, Shenoy KV, Soltesz I, Sternson SM, Tsien RW, Tsien RY, Turrigiano GG, Tye KM, Wilson RI (2015) Optogenetics: 10 years after ChR2 in neurons—views from the community. Nat Neurosci 18(9):1202–1212

    Article  CAS  PubMed  Google Scholar 

  23. Editorial (2011) Method of the year 2010. Nat Methods 8(1):1

    Google Scholar 

  24. Boyden ES (2015) Optogenetics and the future of neuroscience. Nat Neurosci 18(9):1200–1201

    Article  CAS  PubMed  Google Scholar 

  25. Sheridan RE, Lester HA (1982) Functional stoichiometry at the nicotinic receptor. The photon cross section for phase 1 corresponds to two bis-Q molecules per channel. J Gen Physiol 80(4):499–515

    Article  CAS  PubMed  Google Scholar 

  26. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J Gen Physiol 75(2):207–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bartels E, Wassermann NH, Erlanger BF (1971) Photochromic activators of the acetylcholine receptor. Proc Natl Acad Sci U S A 68(8):1820–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biswas M, Burghardt I (2014) Azobenzene photoisomerization-induced destabilization of B-DNA. Biophys J 107(4):932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berlin S, Isacoff EY (2017) Synapses in the spotlight with synthetic optogenetics. EMBO Rep 18(5):677–692. doi:10.15252/embr.201744010

  30. Szymanski W, Beierle JM, Kistemaker HA, Velema WA, Feringa BL (2013) Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev 113(8):6114–6178

    Article  CAS  PubMed  Google Scholar 

  31. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104(26):10865–10870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berlin S, Szobota S, Reiner A, Carroll EC, Kienzler MA, Guyon A, Xiao T, Tauner D, Isacoff EY (2016) A family of photoswitchable NMDA receptors. Elife 5

    Google Scholar 

  34. Carroll EC, Berlin S, Levitz J, Kienzler MA, Yuan Z, Madsen D, Larsen DS, Isacoff EY (2015) Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 112(7):E776–E785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437

    Article  CAS  PubMed  Google Scholar 

  36. De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J (2016) Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 352(6285):575–580

    Article  PubMed  CAS  Google Scholar 

  37. Renner C, Moroder L (2006) Azobenzene as conformational switch in model peptides. Chembiochem 7(6):868–878

    Article  CAS  PubMed  Google Scholar 

  38. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman H, Vratsanos SM, Erlanger BF (1968) Photoregulation of an enzymic process by means of a light-sensitive ligand. Science 162(3861):1487–1489

    Article  CAS  PubMed  Google Scholar 

  41. Nargeot J, Lester HA, Birdsall NJ, Stockton J, Wassermann NH, Erlanger BF (1982) A photoisomerizable muscarinic antagonist. Studies of binding and of conductance relaxations in frog heart. J Gen Physiol 79(4):657–678

    Article  CAS  PubMed  Google Scholar 

  42. Deal WJ, Erlanger BF, Nachmansohn D (1969) Photoregulation of biological activity by photochromic reagents. 3. Photoregulation of bioelectricity by acetylcholine receptor inhibitors. Proc Natl Acad Sci U S A 64(4):1230–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D (2007) Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 129(2):260–261

    Article  CAS  PubMed  Google Scholar 

  44. Laprell L, Repak E, Franckevicius V, Hartrampf F, Terhag J, Hollmann M, Sumser M, Rebola N, DiGregorio DA, Trauner D (2015) Optical control of NMDA receptors with a diffusible photoswitch. Nat Commun 6:8076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D (2009) Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl 48(48):9097–9101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4(8):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143

    Article  CAS  PubMed  Google Scholar 

  48. Woolley GA (2005) Photocontrolling peptide alpha helices. Acc Chem Res 38(6):486–493

    Article  CAS  PubMed  Google Scholar 

  49. Browne LE, Nunes JP, Sim JA, Chudasama V, Bragg L, Caddick S, North RA (2014) Optical control of trimeric P2X receptors and acid-sensing ion channels. Proc Natl Acad Sci U S A 111(1):521–526

    Article  CAS  PubMed  Google Scholar 

  50. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400

    Article  CAS  PubMed  Google Scholar 

  51. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347(1):150–160

    Article  CAS  PubMed  Google Scholar 

  53. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368(6467):144–147

    Article  CAS  PubMed  Google Scholar 

  54. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  56. Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu XM, Salter MW (1998) Gain control of NMDA-receptor currents by intracellular sodium. Nature 396(6710):469–474

    Article  CAS  PubMed  Google Scholar 

  58. Jahr CE, Stevens CF (1993) Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proc Natl Acad Sci U S A 90(24):11573–11577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305–313

    Article  CAS  PubMed  Google Scholar 

  61. Davies J, Francis AA, Jones AW, Watkins JC (1981) 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett 21(1):77–81

    Article  CAS  PubMed  Google Scholar 

  62. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A 83(18):7104–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reynolds IJ, Miller RJ (1989) Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol Pharmacol 36(5):758–765

    CAS  PubMed  Google Scholar 

  64. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44(4):851–859

    CAS  PubMed  Google Scholar 

  65. Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA (1997) Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283(3):1285–1292

    CAS  PubMed  Google Scholar 

  66. Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 12(7):1099–1102

    Article  CAS  PubMed  Google Scholar 

  67. Bettini E, Sava A, Griffante C, Carignani C, Buson A, Capelli AM, Negri M, Andreetta F, Senar-Sancho SA, Guiral L, Cardullo F (2010) Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther 335(3):636–644

    Article  CAS  PubMed  Google Scholar 

  68. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26(5):1331–1333

    Article  CAS  PubMed  Google Scholar 

  69. Edman S, McKay S, Macdonald LJ, Samadi M, Livesey MR, Hardingham GE, Wyllie DJ (2012) TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology 63(3):441–449

    Article  CAS  PubMed  Google Scholar 

  70. McKay S, Griffiths NH, Butters PA, Thubron EB, Hardingham GE, Wyllie DJ (2012) Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist. Br J Pharmacol 166(3):924–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferraro TN, Hare TA (1985) Free and conjugated amino acids in human CSF: influence of age and sex. Brain Res 338(1):53–60

    Article  CAS  PubMed  Google Scholar 

  72. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531

    Article  CAS  PubMed  Google Scholar 

  73. Pinard E, Alanine A, Bourson A, Buttelmann B, Gill R, Heitz M, Jaeschke G, Mutel V, Trube G, Wyler R (2001) Discovery of (R)-1-[2-hydroxy-3-(4-hydroxy-phenyl)-propyl]-4-(4-methyl-benzyl)-piperidin-4-ol: a novel NR1/2B subtype selective NMDA receptor antagonist. Bioorg Med Chem Lett 11(16):2173–2176

    Article  CAS  PubMed  Google Scholar 

  74. Mony L, Kew JN, Gunthorpe MJ, Paoletti P (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157(8):1301–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansen KB, Traynelis SF (2011) Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J Neurosci 31(10):3650–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Acker TM, Yuan H, Hansen KB, Vance KM, Ogden KK, Jensen HS, Burger PB, Mullasseril P, Snyder JP, Liotta DC, Traynelis SF (2011) Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol 80(5):782–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mullasseril P, Hansen KB, Vance KM, Ogden KK, Yuan H, Kurtkaya NL, Santangelo R, Orr AG, Le P, Vellano KM, Liotta DC, Traynelis SF (2010) A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun 1:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510):151–155

    Article  CAS  PubMed  Google Scholar 

  79. Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby O, Rawlins JN, Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15(8):1153–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  81. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87(7):1317–1326

    Article  CAS  PubMed  Google Scholar 

  82. Straub C, Granger AJ, Saulnier JL, Sabatini BL (2014) CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One 9(8):e105584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Incontro S, Asensio CS, Edwards RH, Nicoll RA (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83(5):1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Stewart CL, Morgan JI, Connor JA, Curran T (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13(2):325–338

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Erzurumlu RS, Chen C, Jhaveri S, Tonegawa S (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76(3):427–437

    Article  CAS  PubMed  Google Scholar 

  86. Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16(2):333–344

    Article  CAS  PubMed  Google Scholar 

  87. Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 5(5):361–372

    Article  CAS  PubMed  Google Scholar 

  88. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524(7564):230–233

    Article  CAS  PubMed  Google Scholar 

  89. Aronoff R, Petersen CC (2006) Controlled and localized genetic manipulation in the brain. J Cell Mol Med 10(2):333–352

    Article  CAS  PubMed  Google Scholar 

  90. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10(1):12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alvarez VA, Ridenour DA, Sabatini BL (2006) Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 26(30):7820–7825

    Article  CAS  PubMed  Google Scholar 

  92. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16(7):816–823

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kang JY, Kawaguchi D, Coin I, Xiang Z, O’Leary DD, Slesinger PA, Wang L (2013) In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron 80(2):358–370

    Article  CAS  PubMed  Google Scholar 

  95. Klippenstein V, Ghisi V, Wietstruk M, Plested AJ (2014) Photoinactivation of glutamate receptors by genetically encoded unnatural amino acids. J Neurosci 34(3):980–991

    Article  CAS  PubMed  Google Scholar 

  96. Zhu S, Riou M, Yao CA, Carvalho S, Rodriguez PC, Bensaude O, Paoletti P, Ye S (2014) Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces. Proc Natl Acad Sci U S A 111(16):6081–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rau H (1973) Spectroscopic properties of organic azo compounds. Angew Chem Int Ed Engl 12(3):224–235

    Article  Google Scholar 

  98. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reiter A, Skerra A, Trauner D, Schiefner A (2013) A photoswitchable neurotransmitter analogue bound to its receptor. Biochemistry 52(50):8972–8974

    Article  CAS  PubMed  Google Scholar 

  101. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21(9):3063–3072

    CAS  PubMed  Google Scholar 

  102. McIlhinney RA, Le Bourdelles B, Molnar E, Tricaud N, Streit P, Whiting PJ (1998) Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37(10-11):1355–1367

    Article  CAS  PubMed  Google Scholar 

  103. Numano R, Szobota S, Lau AY, Gorostiza P, Volgraf M, Roux B, Trauner D, Isacoff EY (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci U S A 106(16):6814–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reiner A, Isacoff EY (2014) Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat Chem Biol 10(4):273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu J, Liu L, Matsuda T, Zhao Y, Rebane A, Drobizhev M, Chang YF, Araki S, Arai Y, March K, Hughes TE, Sagou K, Miyata T, Nagai T, Li WH, Campbell RE (2013) Improved orange and red Ca(2)+/- indicators and photophysical considerations for optogenetic applications. ACS Chem Neurosci 4(6):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS (2016) Sensitive red protein calcium indicators for imaging neural activity. Elife 5

    Google Scholar 

  109. Li D, Herault K, Isacoff EY, Oheim M, Ropert N (2012) Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J Physiol 590(4):855–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  PubMed  Google Scholar 

  111. Lemoine D, Habermacher C, Martz A, Mery PF, Bouquier N, Diverchy F, Taly A, Rassendren F, Specht A, Grutter T (2013) Optical control of an ion channel gate. Proc Natl Acad Sci U S A 110(51):20813–20818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barria A, Malinow R (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35(2):345–353

    Article  CAS  PubMed  Google Scholar 

  113. Prybylowski K, Fu Z, Losi G, Hawkins LM, Luo J, Chang K, Wenthold RJ, Vicini S (2002) Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci 22(20):8902–8910

    CAS  PubMed  Google Scholar 

  114. Sheng M, Kim E (2011, 2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 3(12). doi:10.1101/cshperspect.a005678

  115. Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M (2007) Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56(3):488–502

    Article  CAS  PubMed  Google Scholar 

  116. Grienberger C, Chen X, Konnerth A (2014) NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81(6):1274–1281

    Article  CAS  PubMed  Google Scholar 

  117. Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11(3):343–348

    Article  CAS  PubMed  Google Scholar 

  118. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  119. Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K (1989) Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79(2):269–277

    Article  CAS  PubMed  Google Scholar 

  120. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10(4):337–347

    Article  CAS  PubMed  Google Scholar 

  122. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hartenbach S, Fussenegger M (2006) A novel synthetic mammalian promoter derived from an internal ribosome entry site. Biotechnol Bioeng 95(4):547–559

    Article  CAS  PubMed  Google Scholar 

  124. Chappell SA, Edelman GM, Mauro VP (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A 97(4):1536–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD (2006) E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol 24(2):68–75

    Article  PubMed  CAS  Google Scholar 

  126. Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233(5316):177–182

    Article  CAS  PubMed  Google Scholar 

  127. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9(5):861–871

    Article  CAS  PubMed  Google Scholar 

  128. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52

    Article  CAS  PubMed  Google Scholar 

  129. Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545

    Article  CAS  PubMed  Google Scholar 

  131. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology, 1st edn. Wiley, Chichester, UK

    Google Scholar 

  132. Beaudoin GM 3rd, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, Arikkath J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7(9):1741–1754

    Article  CAS  PubMed  Google Scholar 

  133. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Newcomer JW, Farber NB, Olney JW (2000) NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci 2(3):219–232

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y. Isacoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Berlin, S., Isacoff, E.Y. (2018). Optical Control of Glutamate Receptors of the NMDA-Kind in Mammalian Neurons, with the Use of Photoswitchable Ligands. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics