Skip to main content

Polyadenylation Site-Based Analysis of Transcript Expression by 3′READS+

  • Protocol
  • First Online:
mRNA Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1648))

Abstract

Deep sequencing of the 3′ end region of poly(A)+ RNA identifies the cleavage and polyadenylation site (PAS) and measures transcript abundance. However, mispriming at internal A-rich regions by the oligo-dT oligo in reverse transcription can lead to falsely identified PASs. This problem can be resolved by direct ligation of an adapter to the 3′ end of RNA. However, ligation-based methods are often inefficient. Here, we describe 3′READS+, an accurate and sensitive method for deep sequencing of the 3′ end of poly(A)+ RNA. Through partial digestion by RNase H of the poly(A) tail bound to a locked nucleic acid (LNA)/DNA hybrid oligo, this method sequences an optimal number of terminal A’s, which balances sequencing quality and accurate identification of PAS in A-rich regions. With efficient ligation steps, 3′READS+ is amenable to small amounts of input RNA. 3′READS+ can also be readily used as a cost-effective method for gene expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11(21):2755–2766

    Article  CAS  PubMed  Google Scholar 

  2. Tian B et al (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33(1):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tian B, Manley JL (2016) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18(1):18–30

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hrdlickova R, Toloue M, Tian B (2016) RNA-seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8(1)

    Google Scholar 

  5. Velculescu VE et al (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  6. Shepard PJ et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17(4):761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Derti A et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22(6):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu Y et al (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21(5):741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jan CH et al (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469(7328):97–101

    Article  CAS  PubMed  Google Scholar 

  10. Hoque M et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    Article  CAS  PubMed  Google Scholar 

  11. Nam DK et al (2002) Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci U S A 99(9):6152–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JY, Park JY, Tian B (2008) Identification of mRNA polyadenylation sites in genomes using cDNA sequences, expressed sequence tags, and trace. Methods Mol Biol 419:23–37

    Article  CAS  PubMed  Google Scholar 

  13. Zheng D, Liu X, Tian B (2016) 3′READS+, a sensitive and accurate method for 3′ end sequencing of polyadenylated RNA. RNA 22(10):1631–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W et al (2015) Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet 11(4):e1005166

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jayaprakash AD et al (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhuang F et al (2012) Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res 40(7):e54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zheng, D., Tian, B. (2017). Polyadenylation Site-Based Analysis of Transcript Expression by 3′READS+. In: Shi, Y. (eds) mRNA Processing. Methods in Molecular Biology, vol 1648. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7204-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7204-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7203-6

  • Online ISBN: 978-1-4939-7204-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics