Skip to main content

Isolation of Antibodies from Human Plasma, Saliva, Breast Milk, and Gastrointestinal Fluid

  • Protocol
  • First Online:
Natural Antibodies

Abstract

Different protocols are required for the collection and isolation of antibodies from various body sites. For the sample collection factors to be considered include anatomic or physiological particularities. Secretory fluids such as saliva, gastrointestinal fluid, or breast milk may contain degrading enzymes that potentially affect the integrity of isolated antibodies. While the isolation of IgG from plasma is a common and often-described procedure, here we focus on methodological approaches to isolate antibodies immunoglobulin A (IgA) or IgM from plasma or secretory fluids. These protocols shall facilitate research on natural and induced antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mantis NJ, Rol N, Corthesy B (2011) Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4(6):603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. von Gunten S, Schaub A, Vogel M, Stadler BM, Miescher S, Simon HU (2006) Immunological and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin (IVIg) preparations. Blood 108(13):4255–4259

    Article  Google Scholar 

  3. Altznauer F, von Gunten S, Späth P, Simon H-U (2003) Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J Allergy Clin Immunol 112(6):1185–1190

    Article  CAS  PubMed  Google Scholar 

  4. Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang L-X et al (2015) Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 125(11):4160–4170

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bayry J, Lacroix-Desmazes S, Donkova-Petrini V, Carbonneil C, Misra N, Lepelletier Y et al (2004) Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci U S A 101(39):14210–14215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaveri SV (2012) Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev 11(11):792–794

    Article  CAS  PubMed  Google Scholar 

  7. Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat JM et al (2013) Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood 122(8):1419–1427

    Article  CAS  PubMed  Google Scholar 

  8. Kaveri S, Vassilev T, Hurez V, Lengagne R, Lefranc C, Cot S et al (1996) Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. J Clin Invest 97(3):865–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Svetlicky N, Ortega-Hernandez O-D, Mouthon L, Guillevin L, Thiesen H-J, Altman A et al (2013) The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. J Clin Immunol 33(1):27–32

    Article  CAS  Google Scholar 

  10. Schaub A, von Gunten S, Vogel M, Wymann S, Ruegsegger M, Stadler BM et al (2011) Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 66(8):1030–1037

    Article  CAS  PubMed  Google Scholar 

  11. von Gunten S, Simon HU (2012) Granulocyte death regulation by naturally occurring autoantibodies. Adv Exp Med Biol 750:157–172

    Article  Google Scholar 

  12. von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S, Crocker PR et al (2007) Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol 119(4):1005–1011

    Article  Google Scholar 

  13. Gelfand EW (2012) Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med 367(21):2015–2025

    Article  CAS  PubMed  Google Scholar 

  14. Gilardin L, Bayry J, Kaveri SV (2014) Intravenous immunoglobulin as clinical immune-modulating therapy. CMAJ 187:257–264

    Article  Google Scholar 

  15. von Gunten S, Simon HU (2008) Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun Rev 7(6):453–456

    Article  Google Scholar 

  16. von Gunten S, Simon H-U (2010) Cell death modulation by intravenous immunoglobulin. J Clin Immunol 30(1):24–30

    Article  Google Scholar 

  17. von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassilev T, Kasermann F et al (2014) IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol 14(5):349

    Article  Google Scholar 

  18. von Gunten S (2014) Protein-glycan interactions as targets of intravenous/subcutaneous immunoglobulin (IVIg/SCIg) preparations. Clin Exp Immunol 178:151–152

    Article  Google Scholar 

  19. Schneider C, Smith DF, Cummings RD, Boligan KF, Hamilton RG, Bochner BS et al (2015) The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Sci Transl Med 7(269):269ra1

    Article  PubMed  PubMed Central  Google Scholar 

  20. von Gunten S, Smith D, Cummings R, Riedel S, Miescher S, Schaub A et al (2009) Intravenous immunoglobulin contains a broad repertoire of anti-carbohydrate antibodies that is no restricted to the IgG2 subclass. J Allergy Clin Immunol 123(6):1268–1276

    Article  Google Scholar 

  21. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J et al (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grader-Beck T, Boin F, von Gunten S, Smith D, Rosen A, Bochner BS (2011) Antibodies recognising sulfated carbohydrates are prevalent in systemic sclerosis and associated with pulmonary vascular disease. Ann Rheum Dis 70(12):2218–2224

    Article  PubMed  PubMed Central  Google Scholar 

  23. Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4(7):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andreas NJ, Kampmann B, Mehring Le-Doare K (2015) Human breast milk: a review on its composition and bioactivity. Early Hum Dev 91(11):629–635

    Article  CAS  PubMed  Google Scholar 

  25. Marsh PD, Do T, Beighton D, Devine DA (2006) Influence of saliva on the oral microbiota. Periodontol 70(1):80–92

    Article  Google Scholar 

  26. Gaspari MM, Brennan PT, Solomon SM, Elson CO (1988) A method of obtaining, processing, and analyzing human intestinal secretions for antibody content. J Immunol Methods 110(1):85–91

    Article  CAS  PubMed  Google Scholar 

  27. Wehrli M, Cortinas-Elizondo F, Hlushchuk R, Daudel F, Villiger PM, Miescher S et al (2014) Human IgA Fc receptor FcαRI (CD89) triggers different forms of neutrophil death depending on the inflammatory microenvironment. J Immunol 193(11):5649–5659

    Article  CAS  PubMed  Google Scholar 

  28. Rossato E, Ben Mkaddem S, Kanamaru Y, Hurtado-Nedelec M, Hayem G, Descatoire V et al (2015) Reversal of arthritis by human monomeric IgA through the receptor-mediated SH2 domain–containing phosphatase 1 inhibitory pathway. Arthritis Rheumatol 67(7):1766–1777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research by the authors is supported by the Swiss National Science Foundation (Grant No. 310030_162552/1) and the Bulgarian–Swiss Research Program (BSRP) No. IZEBZO_142967 to SVG. MW received support from the Swiss National Science Foundation (grant No. 323530-139174, MD-PhD Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan von Gunten M.D., Ph.D., M.M.E .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Schneider, C., Illi, M., Lötscher, M., Wehrli, M., von Gunten, S. (2017). Isolation of Antibodies from Human Plasma, Saliva, Breast Milk, and Gastrointestinal Fluid. In: Kaveri, S., Bayry, J. (eds) Natural Antibodies. Methods in Molecular Biology, vol 1643. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7180-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7180-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7179-4

  • Online ISBN: 978-1-4939-7180-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics