Skip to main content

Generating Genetically Modified Mice: A Decision Guide

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1642))

Abstract

The generation of a new genetically modified mouse strain is a big hurdle to take for many researchers. It is often unclear which steps and decisions have to be made prior to obtaining the desired mouse model. This review aims to help researchers by providing a decision guide that answers the essential questions that need to be asked before generating the most suitable genetically modified mouse line in the most optimal timeframe. The review includes the latest technologies in both the stem cell culture and gene editing tools, particularly CRISPR/Cas9, and provides compatibility guidelines for selecting among the different types of genetic modifications that can be introduced in the mouse genome and the various routes for introducing these modifications into the mouse germline.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Heyer J, Kwong LN, Lowe SW, Chin L (2010) Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 10:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW, Ventura A (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eppig JT, Motenko H, Richardson JE, Richards-Smith B, Smith CL (2015) The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources. Mamm Genome 26:448–455

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosen B, Schick J, Wurst W (2015) Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mamm Genome 26:456–466

    Article  CAS  PubMed  Google Scholar 

  7. Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Burger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Herault Y, Hicks G, Horlein A, Houghton R, Hrabe de Angelis M, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Lloyd KC, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnutgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Stewart AF, Stone K, Swan K, Tadepally H, Teboul L, Tocchini-Valentini GP, Valenzuela D, West AP, Yamamura K, Yoshinaga Y, Wurst W (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang X (2009) Cre transgenic mouse lines. Methods Mol Biol 561:265–273

    Article  CAS  PubMed  Google Scholar 

  9. Trujillo ME, Pajvani UB, Scherer PE (2005) Apoptosis through targeted activation of caspase 8 (“ATTAC-mice”): novel mouse models of inducible and reversible tissue ablation. Cell Cycle 4:1141–1145

    Article  CAS  PubMed  Google Scholar 

  10. Abe T, Fujimori T (2013) Reporter mouse lines for fluorescence imaging. Dev Growth Differ 55:390–405

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Zhao J, Jiang WJ, Shan XW, Yang XM, Gao JG (2012) Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B 13:511–524

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akagi K, Sandig V, Vooijs M, Van der Valk M, Giovannini M, Strauss M, Berns A (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25:1766–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  14. Dow LE, Premsrirut PK, Zuber J, Fellmann C, McJunkin K, Miething C, Park Y, Dickins RA, Hannon GJ, Lowe SW (2012) A pipeline for the generation of shRNA transgenic mice. Nat Protoc 7:374–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seibler J, Kleinridders A, Kuter-Luks B, Niehaves S, Bruning JC, Schwenk F (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res 35:e54

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dickins RA, McJunkin K, Hernando E, Premsrirut PK, Krizhanovsky V, Burgess DJ, Kim SY, Cordon-Cardo C, Zender L, Hannon GJ, Lowe SW (2007) Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gay L, Karfilis KV, Miller MR, Doe CQ, Stankunas K (2014) Applying thiouracil tagging to mouse transcriptome analysis. Nat Protoc 9:410–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Day CP, Merlino G, Van Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jonkers J, Berns A (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2:251–265

    Article  CAS  PubMed  Google Scholar 

  20. Kawase E, Suemori H, Takahashi N, Okazaki K, Hashimoto K, Nakatsuji N (1994) Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int J Dev Biol 38:385–390

    CAS  PubMed  Google Scholar 

  21. Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis AK, Reinholdt LG (2014) Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818

    Article  CAS  PubMed  Google Scholar 

  23. Meissner A, Eminli S, Jaenisch R (2009) Derivation and manipulation of murine embryonic stem cells. Methods Mol Biol 482:3–19

    Article  CAS  PubMed  Google Scholar 

  24. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huijbers IJ, Bin Ali R, Pritchard C, Cozijnsen M, Kwon MC, Proost N, Song JY, de Vries H, Badhai J, Sutherland K, Krimpenfort P, Michalak EM, Jonkers J, Berns A (2014) Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells. EMBO Mol Med 6:212–225

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968

    Article  CAS  PubMed  Google Scholar 

  27. Inui M, Miyado M, Igarashi M, Tamano M, Kubo A, Yamashita S, Asahara H, Fukami M, Takada S (2014) Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep 4:5396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vanden Berghe T, Hulpiau P, Martens L, Vandenbroucke RE, Van Wonterghem E, Perry SW, Bruggeman I, Divert T, Choi SM, Vuylsteke M, Shestopalov VI, Libert C, Vandenabeele P (2015) Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity 43:200–209

    Article  PubMed Central  Google Scholar 

  31. Dow LE, Nasr Z, Saborowski M, Ebbesen SH, Manchado E, Tasdemir N, Lee T, Pelletier J, Lowe SW (2014) Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice. PLoS One 9:e95236

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M (2007) A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, Grochow R, Hock H, Crowley D, Hingorani SR, Zaks T, King C, Jacobetz MA, Wang L, Bronson RT, Orkin SH, DePinho RA, Jacks T (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5:375–387

    Article  CAS  PubMed  Google Scholar 

  35. Chen CM, Krohn J, Bhattacharya S, Davies B (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6:e23376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi T, Huang M, Gorman C, Jaenisch R (1991) A generic intron increases gene expression in transgenic mice. Mol Cell Biol 11:3070–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bochkov YA, Palmenberg AC (2006) Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location. Biotechniques 41: 283, 284, 286, 288 passim

    Google Scholar 

  41. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523

    Article  CAS  PubMed  Google Scholar 

  42. Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R (2006) Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44:23–28

    Article  CAS  PubMed  Google Scholar 

  43. Pardo B, Gomez-Gonzalez B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66:1039–1056

    Article  CAS  PubMed  Google Scholar 

  44. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  45. Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. Curr Protoc Cell Biol. Chapter 19: Unit 19.12 19.12.1–17

    Google Scholar 

  46. Ivics Z, Izsvak Z (2015) Sleeping beauty transposition. Microbiol Spectr 3:MDNA3-0042-2014

    Article  PubMed  Google Scholar 

  47. Ivics Z, Mates L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, Bosze Z, Geurts A, Pravenec M, Rulicke T, Izsvak Z (2014) Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9:773–793

    Article  CAS  PubMed  Google Scholar 

  48. Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo L (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci U S A 108:7902–7907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seibler J, Schubeler D, Fiering S, Groudine M, Bode J (1998) DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry 37:6229–6234

    Article  CAS  PubMed  Google Scholar 

  50. Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21:2258–2270

    Article  CAS  PubMed  Google Scholar 

  51. Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huijbers IJ, Del Bravo J, Bin Ali R, Pritchard C, Braumuller TM, van Miltenburg MH, Henneman L, Michalak EM, Berns A, Jonkers J (2015) Using the GEMM-ESC strategy to study gene function in mouse models. Nat Protoc 10:1755–1785

    Article  CAS  PubMed  Google Scholar 

  53. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, Dickins RA, Kogan SC, Shroyer KR, Sordella R, Hannon GJ, Lowe SW (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huijbers IJ, Krimpenfort P, Berns A, Jonkers J (2011) Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. Bioessays 33:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitrecic D, Huzak M, Curlin M, Gajovic S (2005) An improved method for determination of gene copy numbers in transgenic mice by serial dilution curves obtained by real-time quantitative PCR assay. J Biochem Biophys Methods 64:83–98

    Article  CAS  PubMed  Google Scholar 

  56. Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci U S A 93:13090–13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, Skarnes WC (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12:479

    Article  CAS  PubMed  Google Scholar 

  58. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang Q, Conte N, Skarnes WC, Bradley A (2008) Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci U S A 105:17453–17456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402

    Article  CAS  PubMed  Google Scholar 

  61. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

  62. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo J. Huijbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Huijbers, I.J. (2017). Generating Genetically Modified Mice: A Decision Guide. In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics