Skip to main content

Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Abstract

Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Buylla ER, Benítez M, Davila EB, Chaos A, Espinosa-Soto C, Padilla-Longoria P (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10(1):83–91

    Article  CAS  PubMed  Google Scholar 

  2. Huang S, Kauffman S (2009) Complex gene regulatory networks—from structure to biological observables: cell fate determination. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Heidelberg, pp 1180–1213

    Chapter  Google Scholar 

  3. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azpeitia E, Davila-Velderrain J, Villarreal C et al (2014) Gene regulatory network models for floral organ determination. In: Riechmann JL, Wellmer F (eds) Flower development. Springer, New York, NY, pp 441–469

    Chapter  Google Scholar 

  5. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2015) Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Front Genet 6:160

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224:177–178

    Article  CAS  PubMed  Google Scholar 

  7. Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193(2):307–319

    Article  CAS  PubMed  Google Scholar 

  8. Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER (2010) Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol 4:134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benítez M, Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2008) Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model. BMC Syst Biol 2(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pérez-Ruiz RV, García-Ponce B, Marsch-Martínez N et al (2015) XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies arabidopsis shoot apical meristem transitions. Mol Plant 8(5):796–813

    Article  PubMed  Google Scholar 

  11. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  PubMed  Google Scholar 

  12. Kaplan D, Glass L (2012) Understanding nonlinear dynamics. Springer, New York, NY

    Google Scholar 

  13. Ellner SP, Guckenheimer J (2011) Dynamic models in biology. Princeton University Press, Princeton, NY

    Google Scholar 

  14. Garg A, Mohanram K, De Micheli G, Xenarios I (2012) Implicit methods for qualitative modeling of gene regulatory networks In Gene Regulatory Networks. Humana, New York, NY, pp 397–443

    Google Scholar 

  15. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gershenfeld N (1998) The nature of mathematical modeling. Cambridge University Press, Cambridge

    Google Scholar 

  17. Arellano G, Argil J, Azpeitia E et al (2011) “Antelope”: a hybrid-logic model checker for branching-time Boolean GRN analysis. BMC Bioinformatics 12:490

    Article  PubMed  PubMed Central  Google Scholar 

  18. Naldi A, Berenguier D, Fauré A et al (2009) Logical modeling of regulatory networks with ginsim 2.3. Biosystems 97(2):134–139

    Article  CAS  PubMed  Google Scholar 

  19. Corblin F, Fanchon E, Trilling L (2010) Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics 11(1):385

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Jong H, Geiselmann J, Hernandez C et al (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3):336–344

    Article  PubMed  Google Scholar 

  21. Calzone L, Fages F, Soliman S (2006) Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807

    Article  CAS  PubMed  Google Scholar 

  22. Yuan R, Zhu X, Radich JP, Ao P (2016) From molecular interaction to acute promyelocytic leukemia: calculating leukemogenesis and remission from endogenous molecular-cellular network. Sci Rep 6:24307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Azpeitia E, Weinstein N, Benítez M, Mendoza L, Alvarez-Buylla ER (2013) Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Front Plant Sci 4:110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena R. Álvarez-Buylla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Velderraín, J.D., Martínez-García, J.C., Álvarez-Buylla, E.R. (2017). Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction. In: Kaufmann, K., Mueller-Roeber, B. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 1629. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7125-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7125-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7124-4

  • Online ISBN: 978-1-4939-7125-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics