Skip to main content

3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer

  • Protocol
  • First Online:
Book cover Organ Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1597))

Abstract

Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.

We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird MJ, Needham K, Frazier AE et al (2014) Functional characterization of Friedreich ataxia iPS derived neuronal progenitors and their integration on the adult brain. PLoS One 9:e101718

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eigentler A, Boesch S, Schneider R et al (2013) Induced pluripotent stem cells from Friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cells Dev 22:3271–3282

    Article  CAS  PubMed  Google Scholar 

  3. Hick A, Wattenhofer-Donzé M, Chintawar S et al (2013) Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech 6:608–621

    Article  CAS  PubMed  Google Scholar 

  4. Koch P, Breuer P, Peitz M et al (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480:543–546

    CAS  PubMed  Google Scholar 

  5. Ku S, Soragni E, Campau E et al (2010) Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAA∙TTC triplet repeat instability. Cell Stem Cell 7:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watson LM, Wong MMK, Becker EB (2015) Induced pluripotent stem cell technology for modeling and therapy of cerebellar ataxia. Open Biol 5:150056

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wiethoff S, Arber C, Li A et al (2015) Using human induced pluripotent stem cells to model cerebellar disease: hope and hype. J Neurogenetics 29:95–102

    Article  CAS  Google Scholar 

  8. Zervas M, Blaess S, Joyner AL (2005) Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Topic Dev Biol 69:101–138

    Article  CAS  Google Scholar 

  9. Nakamura H, Katahira T, Matsunaga E et al (2005) Isthmus organizer for midbrain and hindbrain development. Brain Res Brain Res Rev 49:12–126

    Article  Google Scholar 

  10. Muguruma K, Nishiyama A, Ono Y et al (2010) Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci 13:1171–1180

    Article  CAS  PubMed  Google Scholar 

  11. Muguruma K, Nishiyama A, Kawakami H et al (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Muguruma Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Muguruma, K. (2017). 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer. In: Tsuji, T. (eds) Organ Regeneration. Methods in Molecular Biology, vol 1597. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6949-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6949-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6947-0

  • Online ISBN: 978-1-4939-6949-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics