Skip to main content

Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Neuromethods ((NM,volume 125))

  • 1243 Accesses

Abstract

Within the last few decades, liquid chromatography-mass spectrometry (LC-MS) has become a preferred method for manifold issues in analytical biosciences, given its high selectivity and sensitivity. However, the analysis of fatty aldehydes, which are important components of cell metabolism, remains challenging. Usually, chemical derivatization prior to MS detection is required to enhance ionization efficiency. In this regard, the coupling of fatty aldehydes to hydrazines like 2,4-dinitrophenylhydrazine (DNPH) is a common approach. Additionally, hydrazones readily react with fatty aldehydes to form stable derivatives, which can be easily separated using high-performance liquid chromatography (HPLC) and subsequently detected by MS. Here, we exemplarily present the quantification of the long-chain fatty aldehyde (2E)-hexadecenal, a break-down product of the bioactive lipid sphingosine 1-phosphate (S1P), after derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone (DAIH) via isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight (ESI-QTOF) MS. Moreover, we show that the addition of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC hydrochloride) as a coupling agent allows for simultaneous determination of fatty aldehydes and fatty acids as DAIH derivatives. Taking advantage of this, we describe in detail how to monitor the degradation of (2E)-hexadecenal and the concurrent formation of its oxidation product (2E)-hexadecenoic acid in lysates of human hepatoblastoma (HepG2) cells within this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsumoto S (2010) Molecular mechanisms underlying sex pheromone production in moths. Biosci Biotechnol Biochem 74(2)223–231

    Article  CAS  PubMed  Google Scholar 

  2. Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287(3)1612–1619

    Article  CAS  PubMed  Google Scholar 

  3. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL (2007) Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 48(11)2485–2498

    Article  CAS  PubMed  Google Scholar 

  4. Janfelt C, Wellner N, Leger PL, Kokesch-Himmelreich J, Hansen SH, Charriaut-Marlangue C, Hansen HS (2012) Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J 26(6)2667–2673

    Article  CAS  PubMed  Google Scholar 

  5. Senanayake VK, Jin W, Mochizuki A, Chitou B, Goodenowe DB (2015) Metabolic dysfunctions in multiple sclerosis: implications as to causation, early detection, and treatment, a case control study. BMC Neurol 15:154

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laurenzi VD, Rogers GR, Hamrock DJ, Marekov LN, Steinert PM, Compton JG, Markova N, Rizzo WB (1996) Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet 12(1)52–57

    Article  PubMed  Google Scholar 

  7. Nishida T, Vang VL, Yamazawa H, Yoshida R, Naka H, Tsuchida K, Ando T (2003) Synthesis and characterization of hexadecadienyl compounds with a conjugated diene system, sex pheromone of the persimmon fruit moth and related compounds. Biosci Biotechnol Biochem 67(4)822–829

    Article  CAS  PubMed  Google Scholar 

  8. Berdyshev EV (2011) Mass spectrometry of fatty aldehydes. Biochim Biophys Acta 1811(11)680–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohshima T, Wada S, Koizumi C (1989) 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids in white muscle of bonitoEuthynnus pelamis (Linnaeus) Lipids 24(5)363–370

    Article  CAS  Google Scholar 

  10. Brahmbhatt V, Nold C, Albert C, Ford D (2008) Quantification of pentafluorobenzyl oxime derivatives of long chain aldehydes by GC–MS analysis. Lipids 43(3)275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kölliker S, Oehme M, Dye C (1998) Structure elucidation of 2,4-dinitrophenylhydrazone derivatives of carbonyl compounds in ambient air by HPLC/MS and multiple MS/MS using atmospheric chemical ionization in the negative ion mode. Anal Chem 70(9)1979–1985

    Article  PubMed  Google Scholar 

  12. Zwiener C, Glauner T, Frimmel F (2002) Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC–ESI–MS–MS. Anal Bioanal Chem 372(5–6)615–621

    Article  CAS  PubMed  Google Scholar 

  13. Lüth A, Neuber C, Kleuser B (2012) Novel methods for the quantification of (2E)-hexadecenal by liquid chromatography with detection by either ESI QTOF tandem mass spectrometry or fluorescence measurement. Anal Chim Acta 722:70–79

    Article  PubMed  Google Scholar 

  14. Neuber C, Schumacher F, Gulbins E, Kleuser B (2014) Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry. Anal Chem 86(18)9065–9073

    Article  CAS  PubMed  Google Scholar 

  15. Pizzimenti S, Ciamporcero ES, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G (2013) Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 4:242

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aldini G, Domingues MR, Spickett CM, Domingues P, Altomare A, Sánchez-Gómez FJ, Oeste CL, Pérez-Sala D (2015) Protein lipoxidation: detection strategies and challenges. Redox Biol 5:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283(23)15545–15549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Upadhyaya P, Kumar A, Byun H-S, Bittman R, Saba JD, Hecht SS (2012) The sphingolipid degradation product trans-2-hexadecenal forms adducts with DNA. Biochem Biophys Res Commun 424(1)18–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duerr MA, Aurora R, Ford DA (2015) Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils. J Lipid Res 56(5)1014–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boon PJM, Marinho HS, Oosting R, Mulder GJ (1999) Glutathione conjugation of 4-hydroxy-trans-2,3-nonenal in the rat in vivo, the isolated perfused liver and erythrocytes. Toxicol Appl Pharmacol 159(3)214–223

    Article  CAS  PubMed  Google Scholar 

  21. Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller Raphael A, Kihara A (2012) The Sjögren-larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell 46(4)461–471

    Article  CAS  PubMed  Google Scholar 

  22. Püttmann M, Krug H, von Ochsenstein E, Kattermann R (1993) Fast HPLC determination of serum free fatty acids in the picomole range. Clin Chem 39(5)825–832

    PubMed  Google Scholar 

  23. Ciccimaro E, Blair IA (2010) Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2(2)311–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Kleuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Neuber, C., Schumacher, F., Gulbins, E., Kleuser, B. (2017). Mass Spectrometric Determination of Fatty Aldehydes Exemplified by Monitoring the Oxidative Degradation of (2E)-Hexadecenal in HepG2 Cell Lysates. In: Wood, P. (eds) Lipidomics. Neuromethods, vol 125. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6946-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6946-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6944-9

  • Online ISBN: 978-1-4939-6946-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics