Skip to main content

Mathematical Modeling of Synaptic Patterns

  • Protocol
  • First Online:
Book cover The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1584))

Abstract

During antigen recognition by T cells, a specific spatial structure is formed at the contact face to an antigen-presenting cell (APC), called an immunological synapse (IS). The IS supports bidirectional signaling and release of effector molecules and is widely studied both biologically and numerically, in order to understand the process of T cell activation and signaling. This specialized structure harbors a central area (central supramolecular activation cluster, cSMAC) populated by T cell receptor-peptide-major histocompatibility complex (TCR-pMHC ) interactions, hedged by a peripheral ring (peripheral supramolecular activation cluster, pSMAC) of integrin lymphocyte function associated-1 interactions with its immunoglobulin superfamily ligand intercellular adhesion molecule-1 (LFA-1-ICAM-1). These two regions form the “bull’s eye” pattern characteristic of the mature IS.

In theoretical studies, different modeling architectures, including partial differential equations (PDE) and agent-based models , have been developed with the purpose to answer mechanistic questions about the IS dynamics. In this chapter, we explain possible physiological mechanisms that lead to the formation of ISs and technical issues that may occur in the course of development of agent-based models.

Inquiries regarding this work may be addressed to Anastasios Siokis <Anastasios.Siokis@helmholtz-hzi.de> or Michael Meyer-Hermann <mmh@theoretical-biology.de>.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grakoui A, Bromley SK, Sumen C, Davis MM, Andrey SS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    Article  CAS  PubMed  Google Scholar 

  2. Alarcón B, Mestre D, Martínez-Martín N (2011) The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology 133(4):420–425

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tabdanov E, Gondarenko S, Kumari S, Liapis A, Dustin ML, Sheetz MP, Kam LC, Iskratsch T (2015) Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integr Biol 7(10):1272–1284

    Article  CAS  Google Scholar 

  4. Alvaro Ortega-Carrion A, Vicente-Manzanares M (2016) Concerning immune synapses: a spatiotemporal timeline. F1000Res 310(5751):1191–1193

    Google Scholar 

  5. Qi SY, Groves JT, Chakraborty AK (2001) Synaptic pattern formation during cellular recognition. Proc Natl Acad Sci 98(12):6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee S-JE, Hori Y, Groves JT, Dustin ML, Chakraborty AK (2002) The synapse assembly model. Trends Immunol 23(10):500–502

    Article  CAS  PubMed  Google Scholar 

  7. Hori Y, Raychaudhuri S, Chakraborty AK (2002) Analysis of pattern formation and phase separation in the immunological synapse. J Chem Phys 117(20):9491–9501

    Article  CAS  Google Scholar 

  8. Burroughs NJ, Wülffng C (2002) Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse. Biophys J 83(4):1784–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weikl TR, Groves JT, Lipowsky R (2002) Pattern formation during adhesion of multicomponent membranes. Europhys Lett 59(6):916–922

    Article  CAS  Google Scholar 

  10. Weikl TR, Lipowsky R (2004) Pattern formation during T-cell adhesion. Biophys J 87(6):3665–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlson A, Mahadevan L (2015) Elastohydrodynamics and kinetics of protein patterning in the immunological synapse. PLoS Comput Biol 11(12):e1004481

    Article  PubMed  PubMed Central  Google Scholar 

  12. Figge MT, Meyer-Hermann M (2006) Geometrically repatterned immunological synapses uncover formation mechanisms. PLoS Comput Biol 2(11):e171

    Article  PubMed  PubMed Central  Google Scholar 

  13. Figge MT, Meyer-Hermann M (2009) Modeling receptor-ligand binding kinetics in immunological synapse formation. Eur Phys J D 51(1):153–160

    Article  CAS  Google Scholar 

  14. Tsourkas PK, Baumgarth N, Simon SI, Raychaudhuri S (2007) Mechanisms of B-cell synapse formation predicted by Monte Carlo simulation. Biophys J 92(12):4196–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsourkas PK, Raychaudhuri S (2010) Modeling of B cell synapse formation by Monte Carlo simulation shows that directed transport of receptor molecules is a potential formation mechanism. Cell Mol Biol 3(3):256–268

    CAS  Google Scholar 

  16. Sage PT, Varghese LM, Martinelli R, Sciuto TE, Kamei M, Dvorak AM, Springer TA, Sharpe AH, Carman CV (2012) Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. J Immunol 188(8):3686–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (2001) The immunological synapse. Annu Rev Immunol 19(1):375–396

    Article  CAS  PubMed  Google Scholar 

  18. Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G, Gertler FB, Kam LC, Carman CV, Burkhardt JK, Irvine DJ, Dustin ML (2015) Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the wasp pathway. Elife 4:e04953

    Article  PubMed Central  Google Scholar 

  19. Yi J, Wu XS, Crites T, Hammer JA (2012) Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse is Jurkat T cells. Mol Biol Cell 23(5):834–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mossman KD, Campi D, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Dustin for editing the manuscript. This work was supported by the Human Frontier Science Program (RGP0033/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastasios Siokis or Michael Meyer-Hermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Siokis, A., Robert, P.A., Meyer-Hermann, M. (2017). Mathematical Modeling of Synaptic Patterns. In: Baldari, C., Dustin, M. (eds) The Immune Synapse. Methods in Molecular Biology, vol 1584. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6881-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6881-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6879-4

  • Online ISBN: 978-1-4939-6881-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics