Skip to main content

FPPS: Fast Profiling of Protease Specificity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1574))

Abstract

Profiling of protease specificity is crucial for characterization of these important enzymes that play numerous roles in health and disease. In the past, several proteomic methods have been developed that enable profiling of protease specificities. Although able to identify thousands of protease cleavage events, these degradomics approaches are often time consuming and methodologically challenging, which limits their application to specialized proteomic groups or the laboratories that initially introduced them. The FPPS approach described here (i.e., fast proteomic profiling of protease specificity) is simple and straightforward and produces reliable results comparable to other more elaborate procedures. It employs labeling the novel N-termini generated by the protease under investigation and subsequent peptide fractionation on SAX-C18 Stage Tips. The procedure can be performed in 2 days, does not require peptide enrichment steps, and can thus be implemented in any proteomic laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

ABC :

Ammonium bicarbonate

AcD 3 -NHS :

N-hydroxysuccinimide ester of trideutero-acetate.

DTT :

Dithiothreitol

IAA :

Iodoacetamide

SAX :

Strong anion exchanger

References

  1. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799

    Article  CAS  PubMed  Google Scholar 

  3. Vizovisek M, Vidmar R, Fonovic M, Turk B (2016) Current trends and challenges in proteomic identification of protease substrates. Biochimie 122:77–87

    Article  CAS  PubMed  Google Scholar 

  4. Vizovisek M, Vidmar R, Van Quickelberghe E, Impens F, Andjelkovic U, Sobotic B, Stoka V, Gevaert K, Turk B, Fonovic M (2015) Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics 15(14):2479–2490

    Article  CAS  PubMed  Google Scholar 

  5. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8(12):5674–5678

    Article  CAS  PubMed  Google Scholar 

  6. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  7. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  8. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6(11):786–787

    Article  CAS  PubMed  Google Scholar 

  9. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824(1):68–88

    Article  CAS  PubMed  Google Scholar 

  10. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

  11. Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J, Gevaert K (2011) Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat Protoc 6(8):1130–1141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Slovenian Research Agency (J1-0185 and J1-5449 to M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Fonović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vizovišek, M., Vidmar, R., Fonović, M. (2017). FPPS: Fast Profiling of Protease Specificity. In: Schilling, O. (eds) Protein Terminal Profiling. Methods in Molecular Biology, vol 1574. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6850-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6850-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6849-7

  • Online ISBN: 978-1-4939-6850-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics