Skip to main content

Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE

  • Protocol
  • First Online:
CD95

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1557))

Abstract

Phosphorylation of two tyrosines in the death domain of CD95 is a critical mechanism in determining the receptor’s choices between cell death and survival signals. Recently, site-specific monoclonal antibodies against phosphorylated tyrosines of CD95 have been generated and used to successfully detect each phosphorylated death domain tyrosine of CD95 directly and separately by immunoblotting. Here we provide detailed protocols and useful tips for a successful site-specific detection of phosphorylated death domain tyrosine of CD95 following a protein separation by sizes (conventional SDS-PAGE) and by degrees of phosphorylation (phospho-protein affinity, mobility shift SDS-PAGE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakrabandhu K et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220

    Article  CAS  PubMed  Google Scholar 

  2. Chakrabandhu K et al (2016) An evolution-guided analysis reveals a multi-signaling regulation of Fas by tyrosine phosphorylation and its implication in human cancers. PLoS Biol 14(3):e1002401

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gradl G et al (1996) The CD95 (Fas/APO-1) receptor is phosphorylated in vitro and in vivo and constitutively associates with several cellular proteins. Apoptosis 1:131–140

    Article  CAS  Google Scholar 

  4. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4(10):1513–1521

    Article  CAS  PubMed  Google Scholar 

  5. Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482

    Article  CAS  PubMed  Google Scholar 

  6. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  7. Strand S et al (2004) Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene 23(20):3732–3736

    Article  CAS  PubMed  Google Scholar 

  8. Lajmanovich A et al (2009) Identification, characterisation and regulation by CD40 activation of novel CD95 splice variants in CD95-apoptosis-resistant, human, B-cell non-Hodgkin’s lymphoma. Exp Cell Res 315(19):3281–3293

    Article  CAS  PubMed  Google Scholar 

  9. Owen-Schaub L (2001) Soluble Fas and cancer. Clin Cancer Res 7(5):1108–1109

    CAS  PubMed  Google Scholar 

  10. Leon-Bollotte L et al (2011) S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 140(7):2009–2018, 2018.e2001–2004

    Article  CAS  PubMed  Google Scholar 

  11. Anathy V et al (2009) Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. J Cell Biol 184(2):241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feig C, Tchikov V, Schütze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231

    Article  CAS  PubMed  Google Scholar 

  13. Kamitani T, Nguyen HP, Yeh ET (1997) Activation-induced aggregation and processing of the human Fas antigen. Detection with cytoplasmic domain-specific antibodies. J Biol Chem 272(35):22307–22314

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe-Fukunaga R et al (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148(4):1274–1279

    CAS  PubMed  Google Scholar 

  15. Itoh N et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243

    Article  CAS  PubMed  Google Scholar 

  16. Oehm A et al (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 267(15):10709–10715

    CAS  PubMed  Google Scholar 

  17. Shatnyeva OM et al (2011) Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation. PLoS One 6(5):e19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keppler OT et al (1999) Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 9(6):557–569

    Article  CAS  PubMed  Google Scholar 

  19. García-Fuster MJ et al (2007) Effects of constitutive deletion of opioid receptors on the basal densities of Fas and Fas-associated protein with death domain (FADD) in the mouse brain: a delta-opioid tone inhibits FADD. Eur Neuropsychopharmacol 17(5):366–374

    Article  PubMed  Google Scholar 

  20. Chen L et al (2010) CD95 promotes tumour growth. Nature 465(7297):492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peter ME (2014) DICE: a novel tumor surveillance mechanism-a new therapy for cancer? Cell Cycle 13(9):1373–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Odile Hueber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chakrabandhu, K., Huault, S., Hueber, AO. (2017). Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE. In: Legembre, P. (eds) CD95. Methods in Molecular Biology, vol 1557. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6780-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6780-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6778-0

  • Online ISBN: 978-1-4939-6780-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics