Skip to main content

Monitoring Autophagy in Muscle Stem Cells

  • Protocol
  • First Online:
Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1556))

Abstract

Autophagy is critical not only for the cell’s adaptive response to starvation but also for cellular homeostasis, by acting as quality-control machinery for cytoplasmic components. This basal autophagic activity is particularly needed in postmitotic cells for survival maintenance. Recently, basal autophagic activity was reported in skeletal muscle stem cells (satellite cells) in their dormant quiescent state. Satellite cells are responsible for growth as well as for regeneration of muscle in response to stresses such as injury or disease. In the absence of stress, quiescence is the stem cell state of these cells throughout life, although which mechanisms maintain long-life quiescence remains largely unknown. Our recent findings showed that autophagy is necessary for quiescence maintenance in satellite cells and for retention of their regenerative functions. Importantly, damaged organelles and proteins accumulated in these cells with aging and this was connected to age-associated defective autophagy. Refueling of autophagy through genetic and pharmacological strategies restored aged satellite cell functions, and these finding have biomedical implications. In this chapter, we describe different experimental strategies to evaluate autophagic activity in satellite cells in resting muscle of mice. They should facilitate our competence to investigate stem cell functions both during tissue homeostasis as in pathological conditions.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    CAS  PubMed  Google Scholar 

  2. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2):55–72

    CAS  PubMed  Google Scholar 

  3. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    CAS  PubMed  Google Scholar 

  4. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Klionsky DJ (2005) Autophagy. Curr Biol 15(8):R282–R283

    CAS  PubMed  Google Scholar 

  6. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    CAS  PubMed  Google Scholar 

  7. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18

    CAS  PubMed  Google Scholar 

  8. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunn WA Jr et al (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1(2):75–83

    CAS  PubMed  Google Scholar 

  11. Bernales S, Schuck S, Walter P (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3(3):285–287

    PubMed  Google Scholar 

  12. Kraft C et al (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10(5):602–610

    CAS  PubMed  Google Scholar 

  13. Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauckman KA, Owusu-Boaitey N, Mysorekar IU (2015) Selective autophagy: xenophagy. Methods 75:120–127

    CAS  PubMed  Google Scholar 

  15. Lamark T, Johansen T (2012) Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012:736905

    PubMed  PubMed Central  Google Scholar 

  16. Komatsu M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163

    CAS  PubMed  Google Scholar 

  17. Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    CAS  PubMed  Google Scholar 

  18. Lamark T et al (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8(13):1986–1990

    CAS  PubMed  Google Scholar 

  19. Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular functions. Genes Cells 15(9):923–933

    CAS  PubMed  Google Scholar 

  20. Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy. Semin Immunopathol 32(4):431–436

    PubMed  Google Scholar 

  21. Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    CAS  PubMed  Google Scholar 

  22. Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    CAS  PubMed  Google Scholar 

  23. García-Prat L et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42

    PubMed  Google Scholar 

  24. Tang AH, Rando TA. (2014) Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J 33(23):2782–2797.

    Google Scholar 

  25. Warr MR et al (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494(7437):323–327

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Itoh N, Kimura T (2007) Cytokine-induced metallothionein expression and modulation of cytokine expression by metallothionein. Yakugaku Zasshi 127(4):685–694

    CAS  PubMed  Google Scholar 

  27. Mauro A (1961) Satellite cells of skeletal fibers. JBiophysBiochemCytol 9:493–495

    CAS  Google Scholar 

  28. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18

    CAS  PubMed  Google Scholar 

  30. Komatsu M et al (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14(5):887–894

    CAS  PubMed  Google Scholar 

  31. Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66(6):457–462

    CAS  PubMed  Google Scholar 

  32. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232

    CAS  PubMed  Google Scholar 

  33. Warnes G (2015) Flow cytometric assays for the study of autophagy. Methods 82:21–28

    CAS  PubMed  Google Scholar 

  34. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460

    CAS  PubMed  Google Scholar 

  35. Breitkreutz BJ et al (2001) AFM 4.0: a toolbox for DNA microarray analysis. Genome Biol 2(8):SOFTWARE0001

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    PubMed  Google Scholar 

  37. Hulsen T, de Vlieg J, Alkema W (2008) BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488

    PubMed  PubMed Central  Google Scholar 

  38. Yang YP et al (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34(5):625–635

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bollon AP et al (1988) Human cytokines, tumor necrosis factor, and interferons: gene cloning, animal studies, and clinical trials. J Cell Biochem 36:353–367

    CAS  PubMed  Google Scholar 

  40. Buttner S et al (2014) Spermidine protects against alpha-synuclein neurotoxicity. Cell Cycle 13(24):3903–3908

    PubMed  PubMed Central  Google Scholar 

  41. Komatsu M et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Crews L et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5(2):e9313

    PubMed  PubMed Central  Google Scholar 

  43. Spencer B et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29(43):13578–13588

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nascimento-Ferreira I et al (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134(Pt 5):1400–1415

    PubMed  Google Scholar 

  45. Mizushima N et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mizushima N (2009) Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods Enzymol 452:13–23

    CAS  PubMed  Google Scholar 

  47. Kuma A, Mizushima N (2008) Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 4(1):61–62

    CAS  PubMed  Google Scholar 

  48. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328

    CAS  PubMed  Google Scholar 

  49. Keller C et al (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18(21):2608–2613

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishijo K et al (2009) Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J 23(8):2681–2690

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories has been supported by: MINECO, Spain SAF2012-38547, AFM, E-Rare/Eranet, Fundació Marató-TV3, MDA, EU-FP7 (Myoage, Optistem, and Endostem), and DuchennePP-NL, to PM-C; and ISCIII-FEDER, Spain (FIS-PS09/01267, FIS-PI13/02512, CP09/00184, PI14/01529) and CIBERNED to MM-V. L.G.-P. was supported by a Predoctoral Fellowship from Programa de Formación de Personal Investigador (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martínez-Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

García-Prat, L., Muñoz-Cánoves, P., Martínez-Vicente, M. (2017). Monitoring Autophagy in Muscle Stem Cells. In: Perdiguero, E., Cornelison, D. (eds) Muscle Stem Cells. Methods in Molecular Biology, vol 1556. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6771-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6771-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6769-8

  • Online ISBN: 978-1-4939-6771-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics