Skip to main content

Epidemiological Surveillance and Typing Methods to Track Antibiotic Resistant Strains Using High Throughput Sequencing

  • Protocol
  • First Online:
Antibiotics

Abstract

High-Throughput Sequencing (HTS) technologies transformed the microbial typing and molecular epidemiology field by providing the cost-effective ability for researchers to probe draft genomes, not only for epidemiological markers but also for antibiotic resistance and virulence determinants. In this chapter, we provide protocols for the analysis of HTS data for the determination of multilocus sequence typing (MLST) information and for determining presence or absence of antibiotic resistance genes.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6634-9_21

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6634-9_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Courvalin P (2016) Why is antibiotic resistance a deadly emerging disease? Clin Microbiol Infect

    Google Scholar 

  2. Struelens MJ (1996) Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11

    Article  PubMed  Google Scholar 

  3. Baggesen DL, Sorensen G, Nielsen EM et al (2010) Phage typing of Salmonella Typhimurium-is it still a useful tool for surveillance and outbreak investigation. Euro Surveill 15(4):19471

    CAS  PubMed  Google Scholar 

  4. Maiden MC, Bygraves JA, Feil EJ et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jolley KA, Maiden MCJ (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feil EJ, Li B, Aanensen D et al (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Francisco AP, Bugalho M, Ramirez M et al (2009) Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10:152

    Article  PubMed  PubMed Central  Google Scholar 

  8. Francisco AP, Vaz C, Monteiro PT et al (2012) PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13:87

    Article  PubMed  PubMed Central  Google Scholar 

  9. Corander J, Waldmann P, Marttinen P et al (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369

    Article  CAS  PubMed  Google Scholar 

  10. Thomas JC, Robinson DA (2014) Multilocus sequence typing of Staphylococcus epidermidis. Methods Mol Biol 1106:61–69

    Article  PubMed  Google Scholar 

  11. Koreen L, Ramaswamy SV, Graviss EA et al (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beall B, Facklam R, Thompson T (1996) Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34:953

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindstedt B (2005) Multiple‐locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26(13):2567–2582

    Article  CAS  PubMed  Google Scholar 

  14. Sabat AJ, Budimir A, Nashev D et al (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:17–30

    Google Scholar 

  15. Carrico JA, Sabat AJ, Friedrich AW et al (2013) Bioinformatics in bacterial molecular epidemiology and public health: databases, tools and the next-generation sequencing revolution. Euro Surveill 18:20382

    CAS  PubMed  Google Scholar 

  16. Loman NJ, Constantinidou C, Chan JZM et al (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    Article  CAS  PubMed  Google Scholar 

  17. Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  PubMed  Google Scholar 

  18. Jünemann S, Sedlazeck FJ, Prior K et al (2013) Updating benchtop sequencing performance comparison. Nat Biotechnol 31:294–296

    Article  PubMed  Google Scholar 

  19. Jünemann S, Prior K, Albersmeier A et al (2014) GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers. PLoS One 9:e107014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  21. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  22. Maiden MCJ, van Rensburg MJJ, Bray JE et al (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11:728–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hatem A, Bozdağ D, Toland AE et al (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chewapreecha C, Marttinen P, Croucher NJ et al (2014) Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 10:e1004547

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harris SR, Feil EJ, Holden MTG et al (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327:469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gardy JL, Johnston JC, Sui SJH et al (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364:730–739

    Article  CAS  PubMed  Google Scholar 

  27. Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  28. McArthur AG, Waglechner N, Nizam F et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447

    Article  CAS  PubMed  Google Scholar 

  30. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thai QK, Bös F, Pleiss J (2009) The Lactamase Engineering Database: a critical survey of TEM sequences in public databases. BMC Genomics 10:390

    Article  PubMed  PubMed Central  Google Scholar 

  32. Croucher NJ, Finkelstein JA, Pelton SI et al (2013) Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leopold SR, Goering RV, Witten A et al (2014) Bacterial whole genome sequencing revisited: portable, scalable and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol 52(7):2365–2370

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larsen MV, Cosentino S, Rasmussen S et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST plus: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  37. CLSI. Performance standards for antimicrobial susceptibility testing; Eighteenth Informational Supplement. CLSI document M100-S18. Wayne, PA: Clinical and Laboratory Standards Institute; 2008

    Google Scholar 

  38. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  39. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quinlan AR (2014) BEDTools: the Swiss‐army tool for genome feature analysis. Wiley, Hoboken, NJ, USA

    Google Scholar 

  41. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 11:11.10.1–11.10.33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João André Carriço .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Machado, M.P., Ribeiro-Gonçalves, B., Silva, M., Ramirez, M., Carriço, J.A. (2017). Epidemiological Surveillance and Typing Methods to Track Antibiotic Resistant Strains Using High Throughput Sequencing. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 1520. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6634-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6634-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6632-5

  • Online ISBN: 978-1-4939-6634-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics