Skip to main content

Pin1 Knockout Mice: A Model for the Study of Tau Pathology in Alzheimer’s Disease

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1523))

Abstract

Pin1 knockout in mice causes age-dependent neuropathy characterized by motor and behavioral deficits, tau hyper phosphorylation, tau filament formation, and neuronal degradation. Here, we describe the methods with mouse behavior test, immunostaining, and immunoblotting to detect many aspects of neurodegeneration in Pin1 knockout mice.

Asami Kondo and Onder Albayram have contributed equally to this work.

Xiao Zhen Zhou and Kun Ping Lu have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer's Association (2016) Alzheimer's disease facts and figures. Alzheimer Assoc 12(4):459–509

    Google Scholar 

  2. Lu KP, Kondo A, Albayram O, Herbert MK, Liu H, Zhou XZ (2016) Potential of the antibody against cis–phosphorylated tau in the early diagnosis, treatment, and prevention of alzheimer disease and brain injury. JAMA Neurol. 73(11):1356–1362. doi:10.1001/jamaneurol.2016.2027

  3. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  CAS  PubMed  Google Scholar 

  4. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380:544–547

    Article  CAS  PubMed  Google Scholar 

  5. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399:784–788

    Article  CAS  PubMed  Google Scholar 

  6. Zhou XZ et al (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6:873–883

    Article  CAS  PubMed  Google Scholar 

  7. Liou Y-C et al (2003) Role of the prolyl isomerase Pin1 in protecting against agedependent neurodegeneration. Nature 424:556–561

    Article  CAS  PubMed  Google Scholar 

  8. Pastorino L et al (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440:528–534

    Article  CAS  PubMed  Google Scholar 

  9. Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and human disease. Nat Rev Mol Cell Biol 8:904–916

    Article  CAS  PubMed  Google Scholar 

  10. Lim J et al (2008) Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J Clin Invest 118:1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee TH, Pastorino L, Lu KP (2011) Peptidyl-prolyl cis-trans isomerase Pin1 in aging, cancer and Alzheimer’s disease. Expert Rev Mol Med 13, e21

    Article  PubMed  Google Scholar 

  12. Driver JA, Zhou XZ, Lu KP (2015) Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer’s disease. Biochim Biophys Acta 1850(10):2069–2076. doi:10.1016/j.bbagen.2014.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura K et al (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149:232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen CH et al (2015) Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease. Neurobiol Dis 76:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee TH et al (2011) Death associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell 42:147–159

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim BM et al (2014) Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 5, e1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma SL et al (2012) A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer’s disease. Neurobiol Aging 33:804–813

    Article  CAS  PubMed  Google Scholar 

  18. Wijsman EM et al (2004) Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am J Hum Genet 75:398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luna-Mun˜oz J, Chavez-Macias L, Garcia-Sierra F, Mena R (2007) Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimers Dis 12:365–375

    Google Scholar 

  20. Hampel H et al (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40

    Article  CAS  PubMed  Google Scholar 

  21. Albayram O et al (2011) Role of CB1 receptors on GABAergic neurons in brain aging. Proc Natl Acad Sci U S A 108:11256–11261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kondo A et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523(7561):431–436

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao VY, Ye Y, Mastwal S, Ren M, Coon M, Liu Q, Costa RM, Wang KH (2015) Motor Learning Consolidates Arc-Expressing Neuronal Ensembles in Secondary Motor Cortex. Neuron 86(6):1385–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants R01CA167677, R03DA031663, R01HL111430, R01AG029385, and R01AG046319, and Alzheimer’s Association grant DVT-14-322623 to K.P.L., and BIDMC pilot grant and gift donations from the Owens Family Foundation to X.Z.Z. and K.P.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Zhen Zhou or Kun Ping Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kondo, A., Albayram, O., Zhou, X.Z., Lu, K.P. (2017). Pin1 Knockout Mice: A Model for the Study of Tau Pathology in Alzheimer’s Disease. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics