Skip to main content

Generalized \(C(\alpha )\) Tests for Estimating Functions with Serial Dependence

  • Chapter
  • First Online:
Book cover Advances in Time Series Methods and Applications

Part of the book series: Fields Institute Communications ((FIC,volume 78))

  • 1174 Accesses

Abstract

We propose generalized \(C(\alpha )\) tests for testing linear and nonlinear parameter restrictions in models specified by estimating functions. The proposed procedures allow for general forms of serial dependence and heteroskedasticity, and can be implemented using any root-n consistent restricted estimator. The asymptotic distribution of the proposed statistic is established under weak regularity conditions. We show that earlier \(C(\alpha )\)-type statistics are included as special cases. The problem of testing hypotheses fixing a subvector of the complete parameter vector is discussed in detail as another special case. We also show that such tests provide a simple general solution to the problem of accounting for estimated parameters in the context of two-step procedures where a subvector of model parameters is estimated in a first step and then treated as fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further discussion of \(C(\alpha )\) tests, the reader may consult Basawa [4], Ronchetti [60], Smith [63], Berger and Wallenstein [8], Dagenais and Dufour [20], and Kocherlakota and Kocherlakota [43].

  2. 2.

    The number of observations in the dataset Y could be different from n, say is equal to \(n_{2}, n_{2}\ne n\). If the auxiliary estimate \(\tilde{ \theta }_{2n_{2}}^{0}\) obtained from the second dataset satisfies \(\sqrt{n_{2} }(\tilde{\theta }_{2n_{2}}^{0}-\theta _{20})=O_{p}(1)\), then \(\sqrt{n}(\tilde{ \theta }_{2n_{2}}^{0}-\theta _{20})=\sqrt{n/n_{2}}\sqrt{n_{2}}(\tilde{\theta } _{2n_{2}}^{0}-\theta _{20})=O_{p}(1)\) provided \(n/n_{2}=O(1)\), and the arguments that follow remain valid. When a set of estimating functions \( D_{n_{2}2}(\theta _{2})\) for the second dataset is considered, the argument presented here remains valid provided \(\sqrt{n_{2}}D_{n_{2}2}(\theta _{20})\) obeys a central limit theorem in addition to the previous conditions on the auxiliary estimate and the sample sizes.

References

  1. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–858.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, D. W. K., & Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60, 953–966.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartoo, J. B., & Puri, P. S. (1967). On optimal asymptotic tests of composite statistical hypotheses. The Annals of Mathematical Statistics, 38(6), 1845–1852.

    Article  MathSciNet  MATH  Google Scholar 

  4. Basawa, I. V. (1985). Neyman–Le Cam tests based on estimating functions. In L. Le Cam & R. A. Olshen (Eds.), Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (pp. 811–825). Belmont, CA: Wadsworth.

    Google Scholar 

  5. Basawa, I. V., Godambe, V. P., & Taylor, R. L., (Eds.), (1997). Selected proceedings of the symposium on estimating functions, Vol. 32 of IMS lecture notes monograph series. Hayward, CA: Institute of Mathematical Statistics.

    Google Scholar 

  6. Bera, A., & Bilias, Y. (2001). Rao’s score, Neyman’s \(C(\alpha )\) and Silvey’s LM tests: An essay on historical developments and some new results. Journal of Statistical Planning and Inference, 97, 9–44.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bera, A. K., & Yoon, M. J. (1993). Specification testing with locally misspecified alternatives. Econometric theory, 9(04), 649–658.

    Article  MathSciNet  Google Scholar 

  8. Berger, A., & Wallenstein, S. (1989). On the theory of \(C_\alpha \)-tests. Statistics and Probability Letters, 7, 419–424.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernshtein, A. V. (1976). On optimal asymptotic tests for composite hypotheses under non-standard conditions. Theory of Probability and its Applications, 21, 34–47.

    Article  Google Scholar 

  10. Bernshtein, A. V. (1978). On optimal asymptotic tests of homogeneity. Theory of Probability and Its Applications, 22, 377–383.

    Article  Google Scholar 

  11. Bernshtein, A. V. (1980). On the construction of majorizing tests. Theory of Probability and Its Applications, 25, 16–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernshtein, A. V. (1980). On verifying composite hypotheses with nuisance parameters in the multivariate case. Theory of Probability and Its Applications, 25, 287–298.

    Article  Google Scholar 

  13. Bernshtein, A. V. (1981). Asymptotically similar criteria. Journal of Soviet Mathematics, 17(3), 1825–1857.

    Article  MATH  Google Scholar 

  14. Bhat, B. R., & Nagnur, B. N. (1965). Locally asymptotically most stringent tests and Lagrangian multiplier tests of linear hypotheses. Biometrika, 52(3–4), 459–468.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bühler, W. J., & Puri, P. S. (1966). On optimal asymptotic tests of composite hypotheses with several constraints. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5(1), 71–88.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chant, D. (1974). On asymptotic tests of composite hypotheses in nonstandard conditions. Biometrika, 61(2), 291–298.

    Article  MathSciNet  MATH  Google Scholar 

  17. Chaudhuri, S., & Zivot, E. (2011). A new method of projection-based inference in gmm with weakly identified nuisance parameters. Journal of Econometrics, 164(2), 239–251.

    MathSciNet  MATH  Google Scholar 

  18. Chibisov, D. M. (1973). Asymptotic expansions for Neyman’s \(C(\alpha )\) tests. Proceedings of the second Japan-USSR symposium on probability theory (pp. 16–45). Berlin: Springer.

    Chapter  Google Scholar 

  19. Cushing, M. J., & McGarvey, M. G. (1999). Covariance matrix estimation. In L. Mátyás (Ed.), Generalized method of moments estimation, Chap. 3 (pp. 63–95). Cambridge: Cambridge University Press.

    Google Scholar 

  20. Dagenais, M. G., & Dufour, J.-M. (1991). Invariance, nonlinear models and asymptotic tests. Econometrica, 59, 1601–1615.

    Article  MathSciNet  MATH  Google Scholar 

  21. Davidson, R., & MacKinnon, J. G. (1991). Artificial regressions and \(C(\alpha )\) tests. Economics Letters, 35, 149–153.

    Article  MathSciNet  Google Scholar 

  22. Davidson, R., & MacKinnon, J. G. (1993). Estimation and inference in econometrics. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  23. Dufour, J.-M., & Dagenais, M. G. (1992). Nonlinear models, rescaling and test invariance. Journal of Statistical Planning and Inference, 32, 111–135.

    Article  MathSciNet  MATH  Google Scholar 

  24. Dufour, J.-M., & Valéry, P. (2009). Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models. Journal of Econometrics, 150, 193–206.

    Article  MathSciNet  MATH  Google Scholar 

  25. Durbin, J. (1960). Estimation of parameters in time series regression models. Journal of the Royal Statistical Society, Series A, 22, 139–153.

    MathSciNet  MATH  Google Scholar 

  26. Edwards, C. H. (1973). Advanced calculus of several variables. New York, NY: Dover.

    MATH  Google Scholar 

  27. Foutz, R. V. (1976). On the consistency of locally asymptotically most stringent tests. The Canadian Journal of Statistics/ La Revue Canadienne de Statistique, 4(2), 211–219.

    Article  MathSciNet  MATH  Google Scholar 

  28. Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. The Annals of Mathematical Statistics, 31, 1208–1212. (Ackowledgement 32 (1960), 1343).

    Article  MathSciNet  MATH  Google Scholar 

  29. Godambe, V. P. (Ed.). (1991). Estimating functions. Oxford: Clarendon Press.

    MATH  Google Scholar 

  30. Gong, G., & Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and applications. The Annals of Statistics, 13, 861–869.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gouriéroux, C., & Monfort, A. (1995). Statistics and econometric models (trans: Quang Vuong) (Vols. 1 & 2). Cambridge: Cambridge University Press.

    Google Scholar 

  32. Hall, A. R. (2000). Covariance matrix estimation and the power of the overidentifying restrictions test. Econometrica, 68, 1517–1528.

    Article  MathSciNet  MATH  Google Scholar 

  33. Hall, A. R. (2004). Generalized method of moments, Advanced texts in econometrics. Oxford: Oxford University Press.

    Google Scholar 

  34. Hall, W. J., & Mathiason, D. J. (1990). On large-sample estimation and testing in parametric models. International Statistical Review, 58(1), 77–97.

    Article  MATH  Google Scholar 

  35. Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous processes. Econometrica, 60, 967–972.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054.

    Article  MathSciNet  MATH  Google Scholar 

  37. Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.

    Book  MATH  Google Scholar 

  38. Heyde, C. C. (1997). Quasi-likelihood and its application: A general approach to optimal parameter estimation. Springer series in statistics New York, NY: Springer.

    Google Scholar 

  39. Jaggia, S., & Trivedi, P. K. (1994). Joint and separate score tests for state dependence and unobserved heterogeneity. Journal of Econometrics, 60(1), 273–291.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kiefer, N. M., Vogelsang, T., & Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68, 695–714.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kiefer, N. M., & Vogelsang, T. J. (2002). Heteroskedasticity-autocorrelation robust standard errors using the bartlett kernel without truncation. Econometrica, 70, 2093–2095.

    Article  MATH  Google Scholar 

  42. Kiefer, N. M., & Vogelsang, T. J. (2005). A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econometric Theory, 21(6), 1130–1164.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kocherlakota, S., & Kocherlakota, K. (1991). Neyman’s \(C(\alpha )\) test and Rao’s efficient score test for composite hypotheses. Statistics and Probability Letters, 11, 491–493.

    Article  MathSciNet  MATH  Google Scholar 

  44. Le Cam, L. (1956). On the asymptotic theory of estimation and testing hypotheses. In J. Neyman (Ed.), Proceedings of the third Berkeley symposium on mathematical statistics and probability. Berkeley, CA: The University of California Press.

    Google Scholar 

  45. Le Cam, L., & Traxler, R. (1978). On the asymptotic behavior of mixtures of Poisson distributions. Probability Theory and Related Fields, 44(1), 1–45.

    MathSciNet  MATH  Google Scholar 

  46. Moran, P. A. P. (1970). On asymptotically optimal tests of composite hypotheses. Biometrika, 57(1), 47–55.

    Article  MathSciNet  MATH  Google Scholar 

  47. Moran, P. A. P. (1973). Asymptotic properties of homogeneity tests. Biometrika, 60(1), 79–85.

    Article  MathSciNet  MATH  Google Scholar 

  48. Murphy, K. M., & Topel, R. H. (1985). Estimation and inference in two-step econometric models. Journal of Business and Economic Statistics, 3, 370–379.

    MathSciNet  Google Scholar 

  49. Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics, chapter 36 (Vol. 4, pp. 2111–2245). Amsterdam: North-Holland.

    Google Scholar 

  50. Newey, W. K., & West, K. D. (1987). Hypothesis testing with efficient method of moments estimators. International Economic Review, 28, 777–787.

    Article  MathSciNet  MATH  Google Scholar 

  51. Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703–708.

    Article  MathSciNet  MATH  Google Scholar 

  52. Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. In U. Grenander (Ed.), Probability and statistics, the Harald Cramér Volume (pp. 213–234). Uppsala: Almqvist and Wiksell.

    Google Scholar 

  53. Neyman, J. (1979). C(\(\alpha \)) tests and their use. Sankhyā: The Indian Journal of Statistics, Series A, 41, 1–21.

    MathSciNet  MATH  Google Scholar 

  54. Pagan, A. (1984). Econometric issues in the analysis of regressions with generated regressors. International Economic Review, 25, 221–247.

    Article  MathSciNet  MATH  Google Scholar 

  55. Pagan, A. (1986). Two stage and related estimators and their applications. Review of Economic Studies, 53, 517–538.

    Article  MathSciNet  MATH  Google Scholar 

  56. Pal, C. (2003). Higher order \(C(\alpha )\) tests with applications to mixture models. Journal of Statistical Planning and Inference, 113(1), 179–187.

    Google Scholar 

  57. Paul, S. R., & Barnwal, R. K. (1990). Maximum likelihood estimation and a \(C(\alpha )\) test for a common intraclass correlation. Journal of the Royal Statistical Society, Series D (The Statistician), 39(1), 19–24.

    Google Scholar 

  58. Rao, B. L. S. P. (1996). Optimal asymptotic tests of composite hypotheses for continuous time stochastic processes. Sankhyā: The Indian Journal of Statistics, Series A, 58, 8–24.

    MathSciNet  MATH  Google Scholar 

  59. Ray, R. M. (1974). Maxmin \(C(\alpha )\) tests against two-sided alternatives. The Annals of Statistics, 2(6), 1175–1188.

    Article  MathSciNet  MATH  Google Scholar 

  60. Ronchetti, E. (1987). Robust \(C(\alpha )\)-type tests for linear models. Sankhyā: The Indian Journal of Statistics, Series A, 49, 1–16.

    MathSciNet  MATH  Google Scholar 

  61. Singh, A. C., & Zhurbenko, I. G. (1975). The power of the optimal asymptotic tests of composite statistical hypotheses. Proceedings of the National Academy of Sciences, 72(2), 577–580.

    Article  MathSciNet  MATH  Google Scholar 

  62. Small, C. G., & McLeish, D. L. (1994). Hilbert space methods in probability and statistical inference. New York, NY: Wiley.

    Book  MATH  Google Scholar 

  63. Smith, R. J. (1987). Alternative asymptotically optimal tests and their application to dynamic specification. Review of Economic Studies, LIV, 665–680.

    Article  MathSciNet  MATH  Google Scholar 

  64. Smith, R. J. (1987). Testing the normality assumption in multivariate simultaneous limited dependent variable models. Journal of Econometrics, 34, 105–123.

    Article  MathSciNet  MATH  Google Scholar 

  65. Tarone, R. E. (1979). Testing the goodness of fit of the binomial distribution. Biometrika, 66(3), 585–590.

    Article  MATH  Google Scholar 

  66. Tarone, R. E. (1985). On heterogeneity tests based on efficient scores. Biometrika, 72(1), 91–95.

    Article  MathSciNet  Google Scholar 

  67. Tarone, R. E., & Gart, J. J. (1980). On the robustness of combined tests for trends in proportions. Journal of the American Statistical Association, 75(369), 110–116.

    Article  MATH  Google Scholar 

  68. Vorob’ev, L. S., & Zhurbenko, I. G. (1979). Bounds for \(C(\alpha )\)-tests and their applications. Theory of Probability and its Applications, 24, 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang, P. C. C. (1981). Robust asymptotic tests of statistical hypotheses involving nuisance parameters. The Annals of Statistics, 9(5), 1096–1106.

    Article  MathSciNet  MATH  Google Scholar 

  70. Wang, P. C. C. (1982). On the computation of a robust version of the optimal \(C(\alpha )\) test. Communications in Statistics-Simulation and Computation, 11(3), 273–284.

    Article  MathSciNet  MATH  Google Scholar 

  71. Wooldridge, J. M. (1990). A unified approach to robust, regression-based specification tests. Econometric Theory, 6, 17–43.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Marine Carrasco, Jean-Pierre Cotton, Russell Davidson, Abdeljelil Farhat, V. P. Godambe, Christian Genest, Christian Gouriéroux, Stéphane Grégoir, Tianyu He, Frank Kleibergen, Sophocles Mavroeidis, Hervé Mignon, Julien Neves, Denis Pelletier, Mohamed Taamouti, Masaya Takano, Pascale Valéry, two anonymous referees, and the Editor Wai Keung for several useful comments. Earlier versions of this paper were presented at the Canadian Statistical Society 1997 annual meeting and at INSEE (CREST, Paris). This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Dufour .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 1

To simplify notation, we shall assume throughout that \(\omega \in \mathscr {D} _{J}\) (an event with probability 1) and drop the symbol \(\omega \) from the random variables considered. In order to obtain the asymptotic null distribution of the generalized \(C(\alpha )\) statistic defined in (14), we first need to show that \(P(\tilde{\theta }_{n}^{0})\) and \( J_{n}(\tilde{\theta }_{n}^{0})\) converge in probability to \(P(\theta _{0})\) and \(J(\theta _{0})\) respectively. The consistency of \(P(\tilde{\theta } _{n}^{0}),\) i.e.

$$\begin{aligned} \underset{n\rightarrow \infty }{\text {plim }}\big [P\big (\tilde{ \theta }_{n}^{0}\big )-P(\theta _{0})\big ]=0, \end{aligned}$$
(73)

follows simply from the consistency of \(\tilde{\theta }_{n}^{0}\) [Assumption 9] and the continuity of \(P(\theta )\) at \(\theta _{0}\) [Assumption 7]. Further, by Assumption 8, since \( P(\theta )\) is continuous in open neighborhood of \(\theta _{0},\) we also have

$$\begin{aligned} \text {rank }[\tilde{P}_{n}]=\text {rank }[P(\theta _{0})]=p_{1}. \end{aligned}$$
(74)

Consider now \(J_{n}(\tilde{\theta }_{n}^{0}).\) By Assumption 5, for any \(\varepsilon >0\) and \(\varepsilon _{1}>0,\) we can choose \(\delta _{1} :=\delta (\varepsilon _{1}, \varepsilon )>0\) and a positive integer \(n_{1}(\varepsilon , \delta _{1})\) such that: (i) \(U_{J}(\delta _{1}, \varepsilon , \theta _{0})\le \varepsilon _{1}/2,\) and (ii) \(n>n_{1}(\varepsilon , \delta _{1})\) entails

$$\begin{aligned} \mathsf {P}\big [ \varDelta _{n}(\theta _{0}, \delta )>\varepsilon \big ] = \mathsf {P}\big [\{\omega :\varDelta _{n}(\theta _{0}, \delta , \omega )>\varepsilon \}\big ]\le U_{J}(\delta _{1}, \varepsilon , \theta _{0})\le \varepsilon _{1}/2. \end{aligned}$$

Further, by the consistency of \(\tilde{\theta }_{n}^{0}\) [Assumption 9], we can choose \(n_{2}(\varepsilon _{1}, \delta _{1})\) such that \(n>n_{2}(\varepsilon _{1}, \delta _{1})\) entails \(\mathsf {P}[\Vert \tilde{\theta }_{n}^{0}-\theta _{0}\Vert \le \delta _{1}]\ge 1-(\varepsilon _{1}/2).\) Then, using the Boole-Bonferroni inequality, we have for \(n>\max \{n_{1}(\varepsilon , \delta _{1}), n_{2}(\varepsilon _{1}, \delta _{1})\}\):

$$\begin{aligned} \begin{array}{ll} \mathsf {P}\big [\big \Vert J_{n}\big (\tilde{\theta }_{n}^{0}\big )-J(\theta _{0})\big \Vert \le \varepsilon \big ] &{} \ge \mathsf {P}\big [\big \Vert \tilde{\theta }_{n}^{0}-\theta _{0}\big \Vert \le \delta _{1}\;\text {and}\;\big \Vert J_{n}\big (\tilde{\theta }_{n}^{0}\big )-J(\theta _{0})\big \Vert \le \varepsilon \big ] \\ &{} \ge \mathsf {P}\big [\big \Vert \tilde{\theta }_{n}^{0}-\theta _{0}\big \Vert \le \delta _{1}\;\text {and}\;\varDelta _{n}\big ( \theta _{0}, \delta _{1}\big ) \le \varepsilon \big ] \\ &{} \ge 1-\mathsf {P}\big [\big \Vert \tilde{\theta }_{n}^{0}-\theta _{0}\big \Vert>\delta _{1}\big ]-\mathsf {P}\big [\varDelta _{n}\big ( \theta _{0}, \delta _{1}\big ) >\varepsilon \big ] \\ &{} \ge 1-(\varepsilon _{1}/2)-(\varepsilon _{1}/2)=1-\varepsilon _{1}. \end{array} \end{aligned}$$

Thus,

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim \inf }{} \, \mathsf {P}\big [\big \Vert J_{n}\big (\tilde{\theta }_{n}^{0}\big )-J(\theta _{0})\big \Vert \le \varepsilon \big ]\ge 1-\varepsilon _{1},\quad \text {for all }\varepsilon>0,\;\varepsilon _{1}>0, \end{aligned}$$

hence

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\,\mathsf {P}\big [\big \Vert J_{n}\big (\tilde{ \theta }_{n}^{0}\big )-J(\theta _{0})\big \Vert \le \varepsilon \big ]=1,\quad \text {for all }\varepsilon >0, \end{aligned}$$
(75)

or, equivalently,

$$\begin{aligned} \underset{n\rightarrow \infty }{\text {plim}} \,\big [J_{n}\big (\tilde{\theta }_{n}^{0}\big )-J (\theta _{0})\big ]=0. \end{aligned}$$
(76)

By Assumption 4, we can write [setting \( 0/0=0]:\)

$$\begin{aligned} \big \Vert \sqrt{n}\,\big [D_{n}\big (\tilde{\theta }_{n}^{0}\big )-D_{n}(\theta _{0})\big ] -J(\theta _{0})\sqrt{n}\,\big (\tilde{\theta }_{n}^{0}-\theta _{0}\big )\big \Vert =\sqrt{n} \,\big \Vert R_{n}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert \\ =\frac{\big \Vert R_{n}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert }{\big \Vert \tilde{ \theta }_{n}^{0}-\theta _{0}\big \Vert }\sqrt{n}\,\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \end{aligned}$$

where

$$\begin{aligned} \frac{\big \Vert R_{n}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert }{\big \Vert \tilde{ \theta }_{n}^{0}-\theta _{0}\big \Vert }\le r_{n}(\delta , \theta _{0})\;\text { when }\tilde{\theta }_{n}^{0}\in N_{0}\;\text {and }\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \le \delta \end{aligned}$$

and \(\mathop {\lim \sup }\nolimits _{n\rightarrow \infty }\,\mathsf {P}\big [ r_{n}(\delta , \theta _{0})>\varepsilon \big ] <U_{D}(\delta , \varepsilon , \theta _{0}).\) Thus, for any \(\varepsilon >0\) and \(\delta >0,\) we have:

$$\begin{aligned} \mathsf {P}\big [ \frac{\big \Vert R_{n}(\tilde{\theta }_{n}^{0}, \theta _{0})\big \Vert }{\big \Vert \tilde{\theta }_{n}^{0}-\theta _{0}\big \Vert }\le \varepsilon \big ]\ge & {} \mathsf {P}\big [r_{n}(\delta , \theta _{0})\le \varepsilon ,\tilde{\theta }_{n}^{0}\in N_{0}\;\text {and }\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \le \delta \big ] \\\ge & {} 1-\mathsf {P}\big [r_{n}(\delta , \theta _{0})>\varepsilon \,\big ]- \mathsf {P}\big [\,\tilde{\theta }_{n}^{0}\notin N_{0}\;\text {or }\big \Vert \tilde{ \theta }_{n}^{0}-\theta _{0}\big \Vert >\delta \big ] \end{aligned}$$

hence, using the consistency of \(\tilde{\theta }_{n}^{0},\)

$$\begin{aligned} \begin{array}{ll} \underset{n\rightarrow \infty }{\lim \inf }\,\mathsf {P}\big [ \big \Vert R_{n}\big ( \tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert /\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \le \varepsilon \big ] &{} \ge 1-\underset{ n\rightarrow \infty }{\,\lim \sup }\,\mathsf {P}\big [ r_{n}(\delta , \theta _{0})>\varepsilon \,\big ] \\ &{} \quad -\underset{n\rightarrow \infty }{\,\lim \sup }\,\mathsf {P}\big [ \,\tilde{\theta }_{n}^{0}\notin N_{0}\;\text {or }\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert >\delta \big ] \\ &{} \ge 1-U_{D}(\delta , \varepsilon , \theta _{0}). \end{array} \end{aligned}$$

Since \(\mathop {\lim }\nolimits _{\delta \downarrow 0}\,U_{D}(\delta , \varepsilon , \theta _{0})=0,\) it follows that \(\mathop {\lim }\nolimits _{n\rightarrow \infty }\, \mathsf {P}[\Vert R_{n}(\tilde{\theta }_{n}^{0}, \theta _{0})\Vert /\Vert \tilde{\theta }_{n}^{0}-\theta _{0}\Vert \le \varepsilon ]=1\) for any \( \varepsilon >0,\) or equivalently,

$$\begin{aligned} \big \Vert R_{n}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert /\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \underset{n\rightarrow \infty }{\overset{\mathsf {p} }{\longrightarrow }}0. \end{aligned}$$

Since \(\sqrt{n}\,(\tilde{\theta }_{n}^{0}-\theta _{0})\) is asymptotically bounded in probability (by Assumption 9), this entails:

$$\begin{aligned} \sqrt{n}\,\big \Vert R_{n}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert =\frac{ \big \Vert R_{n}(\tilde{\theta }_{n}^{0}, \theta _{0})\big \Vert }{\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert }\sqrt{n}\,\big \Vert \tilde{\theta }_{n}^{0}-\theta _{0}\big \Vert \underset{n\rightarrow \infty }{\overset{\mathsf {p}}{ \longrightarrow }}0\, \end{aligned}$$
(77)

and

$$\begin{aligned} \big \Vert \sqrt{n}\,\big [D_{n}\big (\tilde{\theta }_{n}^{0}\big )-D_{n}(\theta _{0})\big ]-J(\theta _{0})\sqrt{n}\,\big (\tilde{\theta }_{n}^{0}-\theta _{0}\big )\big \Vert \underset{ n\rightarrow \infty }{\overset{\mathsf {p}}{\longrightarrow }}0. \end{aligned}$$
(78)

By Taylor’s theorem and Assumptions 7 and 8, we also have the expansion:

$$\begin{aligned} \psi (\theta )=\psi (\theta _{0})+P(\theta _{0})(\theta -\theta _{0})+R_{2}(\theta , \theta _{0}), \end{aligned}$$
(79)

for \(\theta \in N\subseteq N_{0}\cap V_{0},\) where N is a non-empty open neighborhood of \(\theta _{0}\) and

$$\begin{aligned} \underset{\theta \rightarrow \theta _{0}}{\lim }\big \Vert R_{2}(\theta , \theta _{0})\big \Vert /\big \Vert \theta -\,\theta _{0}\big \Vert =0, \end{aligned}$$

i.e., \(R_{2}(\theta , \theta _{0})=o(\big \Vert \theta -\,\theta _{0}\big \Vert )\), so that, using Assumption 10,

$$\begin{aligned} \sqrt{n}\,P(\theta _{0})\big (\tilde{\theta }_{n}^{0}-\theta _{0}\big )= & {} \sqrt{n} \,\big [\psi \big (\tilde{\theta }_{n}^{0}\big )-\psi (\theta _{0})\big ]-\sqrt{n}\,R_{2}\big (\tilde{ \theta }_{n}^{0}, \theta _{0}\big ) \nonumber \\= & {} -\sqrt{n}\,R_{2}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big ) \end{aligned}$$
(80)

for \(\tilde{\theta }_{n}^{0}\in N,\) and

$$\begin{aligned} \big \Vert \sqrt{n}\,P(\theta _{0})\big (\tilde{\theta }_{n}^{0}-\theta _{0}\big )\big \Vert = \frac{\big \Vert R_{2}\big (\tilde{\theta }_{n}^{0}, \theta _{0}\big )\big \Vert }{\big \Vert \tilde{ \theta }_{n}^{0}-\theta _{0}\big \Vert }\sqrt{n}\big \Vert \tilde{\theta } _{n}^{0}-\theta _{0}\big \Vert \underset{n\rightarrow \infty }{\overset{\mathsf {p} }{\longrightarrow }}0. \end{aligned}$$
(81)

By (74) and (76) jointly with the Assumptions 3, 6, 7, 8, 11 and 12, we have:

$$\begin{aligned} \text {rank }[\tilde{P}_{n}]=p_{1},\text { rank }[\tilde{J}_{n}]=p,\text { rank }[\tilde{I}_{n}]=m,\text { rank } [W_{n}]=m\text {,} \end{aligned}$$
(82)

so the matrices \(\tilde{J}_{n},\;\tilde{I}_{n},\) and \(W_{n}\) all have full column rank. Since \(\mathop {\text {plim}}\limits _{n\rightarrow \infty }\, \tilde{P}_{n}=P(\theta _{0})\) and \(\mathop {\text {plim}}\limits _{n\rightarrow \infty } \tilde{J}_{n}=J(\theta _{0})\), we can then write:

$$\begin{aligned} \underset{n\rightarrow \infty }{\text {plim}}\,\big [\tilde{J} _{n}^{\,\prime }\,W_{n}\,\tilde{J}_{n}\big ]^{-1}= & {} \big [ J(\theta _{0})^{\prime }W_{0}\,J(\theta _{0})\big ] ^{-1},\;\underset{n\rightarrow \infty }{\text {plim}} \,\tilde{Q}_{n}=Q(\theta _{0}), \\ \underset{n\rightarrow \infty }{\text {plim}} \,\tilde{Q}_{n}\, \tilde{J}_{n}= & {} \underset{n\rightarrow \infty }{\text {plim}}\, \tilde{Q}_{n}\,J(\theta _{0})=Q(\theta _{0})\,J(\theta _{0})=P(\theta _{0}), \end{aligned}$$

where \(\tilde{Q}_{n} :=\tilde{Q}[W_{n}]=\tilde{P}_{n}[\tilde{J} _{n}^{\,\prime } W_{n} \tilde{J}_{n}]^{-1}\tilde{J} _{n}^{\,\prime } W_{n}.\) Then, using (78) and (81), it follows that:

$$\begin{aligned} \begin{array}{ll} \underset{n\rightarrow \infty }{\text {plim}} &{} \left\{ \sqrt{n}\, \tilde{Q}_{n}\,D_{n}\big (\tilde{\theta }_{n}^{0}\big )-\sqrt{n}Q(\theta _{0})\,D_{n}(\theta _{0})\right\} \\ &{} =\,\underset{n\rightarrow \infty }{\text {plim}}\left\{ \sqrt{n} \,\tilde{Q}_{n}\,D_{n}\big (\tilde{\theta }_{n}^{0}\big )-Q(\theta _{0})\sqrt{n} \,D_{n}(\theta _{0})\right\} -\,\underset{n\rightarrow \infty }{\text {plim}} \left\{ P(\theta _{0})\sqrt{n}\,(\tilde{\theta } _{n}^{0}-\theta _{0})\right\} \\ &{} =\,\underset{n\rightarrow \infty }{\text {plim}}\quad \left\{ \tilde{Q} _{n}\big [\sqrt{n}\,[D_{n}\big (\tilde{\theta }_{n}^{0}\big )-D_{n}(\theta _{0})]-J(\theta _{0})\sqrt{n}\,(\tilde{\theta }_{n}^{0}-\theta _{0})\big ] \right\} \\ &{} \quad \quad +\;\underset{n\rightarrow \infty }{\text {plim}}\quad \left\{ \big [\tilde{Q}_{n}-Q(\theta _{0})\big ]\sqrt{n} \,D_{n}(\theta _{0})+\big [\tilde{Q}_{n}\,J(\theta _{0})-P(\theta _{0})\big ] \sqrt{n}\,(\tilde{\theta }_{n}^{0}-\theta _{0})\right\} \\ &{} =\,\underset{n\rightarrow \infty }{\text {plim}}\quad \left\{ \tilde{Q} _{n}\big [\sqrt{n}\,[D_{n}\big (\tilde{\theta }_{n}^{0}\big )-D_{n}(\theta _{0})]-J(\theta _{0})\sqrt{n}\,(\tilde{\theta }_{n}^{0}-\theta _{0})\big ] \right\} =0. \end{array} \end{aligned}$$

We conclude that the asymptotic distribution of \(\sqrt{n}\,\tilde{Q}_{n}D_{n}(\tilde{\theta }_{n}^{0})\) is the same as the one of \( Q(\theta _{0})\sqrt{n}\,D_{n}(\theta _{0}),\) namely (by Assumption 2) a \(\mathrm {N}[0,V_{\psi }(\theta _{0})] \) distribution where

$$\begin{aligned} V_{\psi }(\theta )=Q(\theta )\,I(\theta )\,Q(\theta )^{\prime } \end{aligned}$$

and \(V_{\psi }(\theta _{0})\) has rank \(p_{1}=\,\mathrm {rank}\big [ Q(\theta _{0})\big ] =\,\mathrm {rank}[P(\theta _{0})].\) Consequently, the estimator

$$\begin{aligned} \tilde{V}_{\psi }\big (\tilde{\theta }_{n}^{0}\big )=\tilde{Q}_{n}\,\tilde{I}_{n}\, \tilde{Q}_{n}^{\,\prime } \end{aligned}$$
(83)

converges to \(V_{\psi }(\theta _{0})\) in probability and, by (82),

$$\begin{aligned} \text { rank }\,\big [\tilde{V}_{\psi }\big (\tilde{\theta }_{n}^{0}\big )\big ] =p_{1}. \end{aligned}$$
(84)

Thus the test criterion

$$\begin{aligned} {PC}\big (\tilde{\theta }_{n}^{0}; \psi , W_{n}\big )=nD_{n}\big (\tilde{\theta } _{n}^{0}; Z_{n}\big )^{\prime }\tilde{Q}\big [ W_{n}\big ] ^{\prime }\left\{ \tilde{Q}\big [ W_{n}\big ] \tilde{I}_{n}\,\tilde{Q}\big [ W_{n}\big ] ^{\prime }\right\} ^{-1}\tilde{Q}[ W_{n}] D_{n}\big (\tilde{\theta } _{n}^{0}; Z_{n}\big )\, \end{aligned}$$

has an asymptotic \(\chi ^{2}(p_{1})\) distribution.\(\square \)

Proof of Proposition 2

Consider the (non-empty) open neighborhood \(N=N_{1}\cap N_{2}\) of \(\theta _{0}.\) For any \(\theta \in N\) and \(\omega \in \mathscr {Z},\) we can write

$$\begin{aligned} \big \Vert J(\theta )-J(\theta _{0})\big \Vert\le & {} \big \Vert J_{n}(\theta , \omega )-J(\theta )\big \Vert +\big \Vert J_{n}(\theta _{0}, \omega )-J(\theta _{0})\big \Vert \\&+\;\big \Vert J_{n}(\theta , \omega )-J_{n}(\theta _{0}, \omega )\big \Vert \\\le & {} 2\;\underset{\theta \in N}{\sup }\big \Vert J_{n}(\theta , \omega )-J(\theta )\big \Vert +\big \Vert J_{n}(\theta , \omega )-J_{n}(\theta _{0}, \omega )\big \Vert \end{aligned}$$

By Assumption 14b, we have

$$\begin{aligned} \underset{n\rightarrow \infty }{\text {plim}}\quad \Big (\,\underset{ \theta \in N}{\sup }\big \Vert J_{n}(\theta , \omega )-J(\theta )\big \Vert \Big )\le \,\underset{n\rightarrow \infty }{\text {plim}} \Big (\,\underset{\theta \in N_{2}}{\sup }\big \Vert J_{n}(\theta , \omega )-J(\theta )\big \Vert \Big )=0 \end{aligned}$$

and we can find a subsequence \(\left\{ J_{n_{t}}(\theta ,\omega ):t{=}1,2,\dots \right\} \) of \(\left\{ J_{n}(\theta ,\omega ):n=1,2,\dots \right\} \) such that

$$\begin{aligned} \underset{\theta \in N}{\sup }\left\{ \big \Vert J_{n_{t}}(\theta , \omega )-J(\theta )\big \Vert \right\} \underset{t\rightarrow \infty }{ \longrightarrow }0\quad a.s. \end{aligned}$$

Let

$$\begin{aligned} CS=\left\{ \omega \in \mathscr {Z}:\,\underset{t\rightarrow \infty }{\text {lim}} \Big (\,\underset{\theta \in N}{\sup }\big \Vert J_{n_{t}}(\theta , \omega )-J(\theta )\big \Vert \Big )=0\right\} \end{aligned}$$

and \(\varepsilon >0.\) By definition, \(\mathsf {P}\big [ \omega \in CS\big ] =1.\) For \(\,\omega \in CS,\) we can choose \(t_{0}(\varepsilon , \omega )\) such that

$$\begin{aligned} t\ge t_{0}(\varepsilon ,\omega )\Rightarrow 2\;\underset{\theta \in N}{\sup }\left\{ \big \Vert J_{n_{t}}(\theta , \omega )-J(\theta )\big \Vert \right\} <\varepsilon /2. \end{aligned}$$

Further, since \(J_{n}(\theta , \omega )\) is continuous in \(\theta \) at \( \theta _{0},\) we can find \(\delta (n, \omega )>0\) such that

$$\begin{aligned} \big \Vert \theta -\theta _{0}\big \Vert<\delta (n,\omega )\Rightarrow \big \Vert J_{n}(\theta , \omega )-J_{n}(\theta _{0}, \omega )\big \Vert <\varepsilon /2. \end{aligned}$$

Thus, taking \(t_{0}=t_{0}(\varepsilon , \omega )\) and \(n=n_{t_{0}},\) we find that \(\big \Vert \theta -\theta _{0}\big \Vert <\delta (n_{t_{0}},\omega )\) implies

$$\begin{aligned} \big \Vert J(\theta )-J(\theta _{0})\big \Vert <\dfrac{\varepsilon }{2}+ \dfrac{\varepsilon }{2}=\varepsilon . \end{aligned}$$

In other words, for any \(\varepsilon >0,\) we can choose \(\delta =\delta (n_{t_{0}},\varepsilon )>0\) such that

$$\begin{aligned} \big \Vert \theta -\theta _{0}\big \Vert<\delta \Rightarrow \big \Vert J(\theta )-J(\theta _{0})\big \Vert <\varepsilon , \end{aligned}$$

and the function \(J(\theta )\) must be continuous at \(\theta _{0}.\) Part (a) of the Proposition is established.

Set \(\overline{\varDelta }_{n}(N_{2}, \omega ) :=\sup \left\{ \Vert J_{n}(\theta , \omega )-J(\theta )\Vert :\theta \in N_{2}\right\} .\) To get Assumption 5, we note that

$$\begin{aligned} \varDelta _{n}(\theta _{0}, \delta , \omega )\,:= & {} \sup \left\{ \Vert J_{n}(\theta , \omega )-J(\theta _{0})\Vert :\theta \in N_{2}\;\text {and } 0\le \big \Vert \theta -\,\theta _{0}\big \Vert \le \delta \right\} \\\le & {} \overline{\varDelta }_{n}(N_{2}, \omega )\, \end{aligned}$$

for any \(\delta >0,\) hence, by Assumption 14b,

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim \sup }\;\mathsf {P}\big [\{\omega :\varDelta _{n}(\theta _{0}, \delta , \omega )>\varepsilon \}\big ]\le & {} \,\underset{n\rightarrow \infty }{\lim \sup }\;\mathsf {P}\big [ \left\{ \omega :\overline{\varDelta }_{n}(N_{2}, \omega )>\varepsilon \right\} \big ] \\\le & {} U_{J}(\delta , \varepsilon , \theta _{0}) \end{aligned}$$

for any function \(U_{J}(\delta , \varepsilon , \theta _{0})\) that satisfies the conditions of Assumption 5. The latter thus holds with \(V_{0}\) any non-empty open neighborhood of \(\theta _{0}\) such that \(V_{0}\subseteq N_{2}\). To obtain Assumption 4, we note that Assumption 14 entails \(D_{n}(\theta , \omega )\) is continuously differentiable in an open neighborhood of \(\theta _{0}\) for all \(\omega \in \mathscr {D}_{J},\) so that we can apply Taylor’s formula for a function of several variables (see Edwards [26, Section II.7]) to each component of \(D_{n}(\theta , \omega ):\) for all \(\theta \) in an open neighborhood U of \(\theta _{0}\) (with \(U\subseteq N_{2}\)), we can write

$$\begin{aligned} D_{in}(\theta , \omega )= & {} D_{in}(\theta _{0}, \omega )+J_{n}\big (\bar{ \theta }_{n}^{\,i}(\omega ), \omega \big )_{i\cdot }(\theta -\,\theta _{0}) \\= & {} D_{in}(\theta _{0}, \omega )+J(\theta _{0})_{i\cdot }(\theta -\,\theta _{0})+R_{in}\big (\bar{\theta }_{n}^{\,i}(\omega ), \theta _{0}, \omega \big ) ,\;i=1, \ldots , m, \end{aligned}$$

where \(J_{n}(\theta , \omega )_{i\cdot }\) and \(J(\theta )_{i\cdot }\) are the i-th rows of \(J_{n}(\theta , \omega )\) and \(J(\theta )\) respectively,

$$\begin{aligned} R_{in}\big (\bar{\theta }_{n}^{\,i}(\omega ), \theta _{0}, \omega \big )=\big [ J_{n}\big (\bar{\theta }_{n}^{\,i}(\omega ), \omega \big )_{i\cdot }-J(\theta _{0})_{i\cdot }\big ](\theta -\,\theta _{0}) \end{aligned}$$

and \(\bar{\theta }_{n}^{\,i}(\omega )\) belongs to the line joining \(\theta \) and \(\theta _{0}.\) Further, for \(\theta \in U,\)

$$\begin{aligned} \big |R_{in}\big (\bar{\theta }_{n}^{\,i}(\omega ), \theta _{0}, \omega \big ) \big |\le & {} \big \Vert J_{n}\big (\bar{\theta }_{n}^{\,i}(\omega ), \omega \big )_{i\cdot }-J(\theta _{0})_{i\cdot }\big \Vert \,\big \Vert \theta -\,\theta _{0}\big \Vert \\\le & {} \big \Vert J_{n}\big (\bar{\theta }_{n}^{\,i}(\omega ), \omega \big )-J(\theta _{0})\big \Vert \,\big \Vert \theta -\,\theta _{0}\big \Vert \\\le & {} \big \Vert \theta -\,\theta _{0}\big \Vert \,\sup \left\{ \Vert J_{n}(\theta , \omega )-J(\theta )\Vert :\theta \in N_{2}\right\} ,\;i=1, \ldots , m, \end{aligned}$$

hence, on defining \(N_{0}=U,\)

$$\begin{aligned} R_{n}(\theta , \theta _{0}, \omega )=\big [R_{1n}\big (\bar{\theta } _{n}^{\,1}(\omega ), \theta _{0}, \omega \big ), \ldots , R_{mn}\big ( \bar{\theta }_{n}^{\,m}(\omega ), \theta _{0}, \omega \big )\big ]^{\prime }, \end{aligned}$$

we see that

$$\begin{aligned} \big \Vert R_{n}(\theta , \theta _{0}, \omega )\big \Vert\le & {} \overset{ m}{\underset{1=1}{\,\sum }}\big |R_{in}\big (\bar{\theta }_{n}^{\,i}(\omega ), \theta _{0}, \omega \big )\big | \\\le & {} m\,\big \Vert \theta -\,\theta _{0}\big \Vert \,\underset{\theta \in N_{2}}{\sup }\left\{ \Vert J_{n}(\theta , \omega )-J(\theta )\Vert \right\} \, \end{aligned}$$

and

$$\begin{aligned} r_{n}(\delta , \theta _{0}, \omega )\,&:=\sup \left\{ \frac{\big \Vert R_{n}(\theta , \theta _{0}, \omega )\big \Vert }{\big \Vert \theta -\,\theta _{0}\big \Vert }:\theta \in N_{0}\;\text { and }0<\big \Vert \theta -\,\theta _{0}\big \Vert \le \delta \right\} \\\le & {} m\,\sup \left\{ \Vert J_{n}(\theta , \omega )-J(\theta )\Vert :\theta \in N_{2}\right\} \, \end{aligned}$$

Thus \(r_{n}(\delta , \theta _{0}, \omega )\underset{n\rightarrow \infty }{ \overset{\mathsf {p}}{\longrightarrow }}0\) and

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim \sup }\;\mathsf {P}\big [\{\omega :r_{n}(\delta , \theta _{0}, \omega )>\varepsilon \}\big ]\le U_{D}(\delta , \varepsilon , \theta _{0}) \end{aligned}$$
(85)

must hold for any function that satisfies the conditions of Assumption 4. This completes the proof.\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dufour, JM., Trognon, A., Tuvaandorj, P. (2016). Generalized \(C(\alpha )\) Tests for Estimating Functions with Serial Dependence. In: Li, W., Stanford, D., Yu, H. (eds) Advances in Time Series Methods and Applications . Fields Institute Communications, vol 78. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6568-7_7

Download citation

Publish with us

Policies and ethics