Skip to main content

Creation of Three-Dimensional Liver Tissue Models from Experimental Images for Systems Medicine

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1506))

Abstract

In this chapter, we illustrate how three-dimensional liver tissue models can be created from experimental image modalities by utilizing a well-established processing chain of experiments, microscopic imaging, image processing, image analysis and model construction. We describe how key features of liver tissue architecture are quantified and translated into model parameterizations, and show how a systematic iteration of experiments and model simulations often leads to a better understanding of biological phenomena in systems biology and systems medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Drasdo D, Hoehme S, Hengstler JG (2014) How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis. J Hepatol 61:951–956

    Article  PubMed  Google Scholar 

  2. Zellmer S, Schmidt-Heck W, Godoy P, Wenig H, Meyer C, Lehmann T et al (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127–2136

    Article  CAS  PubMed  Google Scholar 

  3. Friebel A, Neitsch J, Johann T, Hammad S, Hengstler JG, Drasdo D, Hoehme S (2015) TiQuant: software for tissue analysis, quantification and surface reconstruction. Bioinformatics 31(19):3234–3236

    Article  CAS  PubMed  Google Scholar 

  4. Morales-Navarrete H, Segovia-Miranda F, Klukowski P, Meyer K, Nonaka H, Marsico G, Chernykh M, Kalaidzidis A, Zerial M, Kalaidzidis Y (2015) A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture. eLife 4:e11214

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schleicher J, Guthke R, Dahmen U et al (2014) A theoretical study of lipid accumulation in the liver-implications for nonalcoholic fatty liver disease. Biochim Biophys Acta 1841:62–69

    Article  CAS  PubMed  Google Scholar 

  6. Huard J, Mueller S, Gilles ED et al (2012) An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes. FEBS J 279:3290–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dooley S, Hamzavi J, Ciuclan L et al (2008) Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 135:642–659

    Article  CAS  PubMed  Google Scholar 

  8. Vlaic S, Schmidt-Heck W, Linde J et al (2012) Modeling the transcription factor network of murine hepatocytes using the extended TILAR approach. BMC Syst Biol 29:147

    Article  CAS  Google Scholar 

  9. Fasbender F, Widera A, Hengstler JG, Watzl C (2016) Natural killer cells and liver fibrosis. Front Immunol 7

    Google Scholar 

  10. Hammad S, Hoehme S, Friebel A, von Recklinghausen I, Othman A, Begher-Tibbe B et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godoy P, Lakkapamu S, Schug M, Bauer A, Stewart JD, Bedawi E et al (2010) Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biol Chem 391(1):73–83

    Article  CAS  PubMed  Google Scholar 

  12. Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci U S A 107(23):10371–10376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogler CE, Zhou HC, LeVoci L, Rogler LE (2007) Clonal, cultured, murine fetal liver hepatoblasts maintain liver specification in chimeric mice. Hepatology 46(6):1971–1978

    Article  CAS  PubMed  Google Scholar 

  14. Tarantola E, Bertone V, Milanesi G, Capelli E, Ferrigno A, Neri D et al (2012) Dipeptidylpeptidase-IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. Eur J Histochem 56(4):e41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Braeuning A, Singh Y, Rignall B, Buchmann A, Hammad S, Othman A et al (2010) Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice. Histochem Cell Biol 134(5):469–481

    Article  CAS  PubMed  Google Scholar 

  16. Schreiber S, Rignall B, Braeuning A, Marx-Stoelting P, Ott T, Buchmann A et al (2011) Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. J Mol Histol 42(5):393–400

    Article  CAS  PubMed  Google Scholar 

  17. Nussler AK, Wildemann B, Freude T, Litzka C, Soldo P, Friess H et al (2014) Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis. Arch Toxicol 88(4):997–1006

    Article  CAS  PubMed  Google Scholar 

  18. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S et al (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. In: Westwood J (ed) Proc. of medicine meets virtual reality. Ios Press, Amsterdam, pp 586–592

    Google Scholar 

  19. Schroeder W, Martin K, Lorensen B (2006) Visualization toolkit: an object-oriented approach to 3D graphics, 4th edn. Kitware, Inc., New Jersy

    Google Scholar 

  20. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  21. Pizer SM, Amburn EP, Austin JD et al (1987) Adaptive histogram equalization and its variations. Comput Vision Graphics Image Process 39:355–368

    Article  Google Scholar 

  22. Mosaliganti K, Gelas A, Megason S (2009) An adaptive thresholding image filter. Insight J 12(1):1–6

    Google Scholar 

  23. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber 9(1):62–66

    Article  Google Scholar 

  24. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  25. Lee TC, Kashyap RL, Chu CN (1994) Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graphical Models Image Process 56(6):462–478

    Article  Google Scholar 

  26. Beare R, Lehmann G (2006) The watershed transform in ITK—discussion and new developments. Insight J 1:1–24

    Google Scholar 

  27. Jagiella N, Müller B, Müller M, Vignon-Clementel IE, Drasdo D (2016) Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC cells from spatial-temporal image data. PLoS Comput Biol 12(2):e1004412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remien CH, Adler FR, Waddoups L, Box TD, Sussman NL (2012) Mathematical modeling of liver injury and dysfunction after acetaminophen overdose: early discrimination between survival and death. Hepatology 56(2):727–734

    Article  CAS  PubMed  Google Scholar 

  29. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T et al (2011) A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ghallab A, Drasdo D, Gebhardt R, Hengstler JG (2015) Model guided identification and therapeutic implications of an ammonia sink mechanism. J Hepat. doi:10.1016/j.jhep.2015.11.018

    Google Scholar 

  31. Schliess F, Drasdo D, Zellmer S (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60(6):2040–2051

    Article  CAS  PubMed  Google Scholar 

  32. Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, Schenk A et al (2014) Spatio-temporal simulation of first pass drug perfusion in the liver. PLoS Comput Biol 10:e1003499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ricken T, Dahmen U, Dirsch O (2010) A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol 9(4):435–450

    Article  PubMed  Google Scholar 

  34. Ochoa JGD, Bucher J, Péry ARR, Zaldivar Comenges JM, Niklas J, Mauch K (2013) A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk. Front Pharmacol 3:204

    Google Scholar 

  35. Godoy P, Hewitt NJ, Albrecht U, Anderson ME, Ansari N, Bhattacharya S et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haeussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat-liver. Eur J Biochem 133:269–275

    Article  CAS  Google Scholar 

  37. Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine-synthetase among rat-liver parenchymal-cells in situ and in primary culture. EMBO J 2:567–570

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Celliere et al (2016) (In preparation)

    Google Scholar 

  39. Ramis-Conde I, Drasdo D, Anderson ARA, Chaplain MAJ (2008) Modeling the influence of the E-cadherin-β-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95(1):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D’Alessandro L, Hoehme S, Drasdo D, Klingmüller U (2015) Unraveling liver complexity from molecular to organ level: challenges and perspectives. Prog Biophys Mol Biol 117(1):78–86

    Article  CAS  PubMed  Google Scholar 

  41. van Liedekerke P, Palm M, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with Agent Based Models: concepts and perspectives. Comput Particle Mech 2:401–444

    Article  Google Scholar 

  42. Scianna M, Preziosi L (2013) Cellular Potts models. Multiscale extensions and biological applications. Chapman & Hall/CRC, London

    Google Scholar 

  43. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkhaeuser Verlag AG, Boston

    Google Scholar 

  44. Alber MS, Kiskowski MA, Glazier JA, Jiang Y (2003) On cellular automaton approaches to modeling biological cells. Math Syst Theory Biol Commun Comput Finance 134:1–39

    Article  Google Scholar 

  45. D’Antonio G, Macklin P, Preziosi L (2013) An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Math Biosci Eng 10:75–101

    Article  PubMed  Google Scholar 

  46. Drasdo D, Kree R, McCaskill JS (1995) Monte Carlo approach to tissue-cell populations. Phys Rev E 52:6635–6657

    Article  CAS  Google Scholar 

  47. Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys J 88(1):62–75

    Article  CAS  PubMed  Google Scholar 

  48. Drasdo D, Hoehme S, Block M (2007) On the role of physics in the growth and pattern formation of multi-cellular systems: what can we learn from individual-cell based models? J Stat Phys 128(1–2):287–345

    Article  Google Scholar 

  49. Montel F, Delarue M, Elgeti J, Vignjevic D, Cappello G, Prost J (2012) Isotropic stress reduces cell proliferation in tumor spheroids. New J Phys 14:055008

    Article  CAS  Google Scholar 

  50. Schluter DK, Ramis-Conde I, Chaplain MAJ (2012) Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys J 103:1141–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Radszuweit M, Block M, Hengstler J, Schöll E, Drasdo D (2009) Comparing the growth kinetics of cell populations in two and three dimensions. Phys Rev E 79:051907

    Article  CAS  Google Scholar 

  52. Kansal AR, Torquato S, Harsh GR IV, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367–382

    Article  CAS  PubMed  Google Scholar 

  53. Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  PubMed  Google Scholar 

  54. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  CAS  PubMed  Google Scholar 

  55. Hatzikirou H, Deutsch A (2010) Lattice-gas cellular automaton modeling of emergent behavior in interacting cell populations. Underst Complex Syst 2010:301–331

    Article  Google Scholar 

  56. Hoehme S, Hengstler JG, Brulport M, Schäfer M, Bauer A, Gebhardt R, Drasdo D (2007) Mathematical modelling of liver regeneration after intoxication with CCl4. Chem-Biol Interact 168:74–93

    Article  CAS  Google Scholar 

  57. Missal K, Cross M, Drasdo D (2006) Reverse engineering of gene regulatory networks for incomplete expression data: transcriptional control of haemopoietic commitment. Bioinformatics 22(6):731–738

    Article  CAS  PubMed  Google Scholar 

  58. Steinwart I, Christmann A (2008) Support vector machines. Springer, New York. ISBN 978-0-387-77242-4

    Google Scholar 

  59. Bosch A, Zisserman A, Muñoz X (2007) Image classification using random forests and ferns. ICCV 2007. IEEE 11th International Conference on Computer Vision

    Google Scholar 

  60. Boykov Y, Kolmogorov V (2004) An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    Article  PubMed  Google Scholar 

  61. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM (2004) Open MPI: goals, concept, and design of a next generation MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004

    Google Scholar 

Download references

Acknowledgments

The presented work was supported by DFG (HO4772/1-1), BMBF (Virtual Liver Network, Lebersimulator, LiSyM), and ANR (iFlow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoehme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hoehme, S., Friebel, A., Hammad, S., Drasdo, D., Hengstler, J.G. (2017). Creation of Three-Dimensional Liver Tissue Models from Experimental Images for Systems Medicine. In: Stock, P., Christ, B. (eds) Hepatocyte Transplantation. Methods in Molecular Biology, vol 1506. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6506-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6506-9_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6504-5

  • Online ISBN: 978-1-4939-6506-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics