Skip to main content

Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells

  • Protocol
  • First Online:
Book cover Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Oligodendrocytes are the myelinating cells of the central nervous system. The role of oligodendrocytes in health and disease has been considerably enhanced by the development of methods to isolate and culture oligodendrocytes from central nervous system tissue. The cellular and molecular mechanisms involved in oligodendrocyte differentiation can be identified by challenging oligodendrocyte progenitors cells (OPCs) by altering their extracellular environment and intrinsic differentiation pathways. To address these issues, it is imperative to develop an in vitro protocol where pure OPCs are isolated and cultured in the presence of inhibitory developmental and differentiation cues like Semaphorin 3A. In this chapter, we describe methods to isolate and culture OPCs from neonatal rat brain tissue and further characterise their differentiation into oligodendrocytes. The described protocol is relatively simple in comparison to existing protocols and can be used to study the effect of lesion-associated inhibitors like Semaphorin 3A on oligodendrocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunge MB, Bunge RP, Pappas GD (1962) Electron microscopic demonstration of connections between glia and myelin sheaths in the developing mammalian central nervous system. J Cell Biol 12:448–453

    Article  CAS  PubMed  Google Scholar 

  2. Bunge RP (1968) Glial cells and the central myelin sheath. Phys Rev 48:197–251

    CAS  Google Scholar 

  3. Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36:48–57

    Article  CAS  PubMed  Google Scholar 

  5. Dai X, Lercher LD, Clinton PM et al (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci 23:5846–5853

    CAS  PubMed  Google Scholar 

  6. Kramer-Albers EM, Bretz N, Tenzer S et al (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461

    Article  PubMed  Google Scholar 

  7. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  8. Ludwin SK (1997) The pathobiology of the oligodendrocyte. J Neuropathol Exp Neurol 56:111–124

    Article  CAS  PubMed  Google Scholar 

  9. Griffiths I, Klugmann M, Anderson T et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613

    Article  CAS  PubMed  Google Scholar 

  10. Pohl HB, Porcheri C, Mueggler T et al (2011) Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci 31:1069–1080

    Article  CAS  PubMed  Google Scholar 

  11. Hardy R, Reynolds R (1991) Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development 111:1061–1080

    CAS  PubMed  Google Scholar 

  12. Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:525–533

    CAS  PubMed  Google Scholar 

  13. McKenzie IA, Ohayon D, Li H et al (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Article  CAS  PubMed  Google Scholar 

  14. Franklin RJM, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  CAS  PubMed  Google Scholar 

  15. Kotter MR, Stadelmann C, Hartung HP (2011) Enhancing remyelination in disease—can we wrap it up? Brain 134:1882–1900

    Article  PubMed  Google Scholar 

  16. Wang S, Sdrulla AD, di Sibio G et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    Article  PubMed  Google Scholar 

  17. Lu QR, Yuk D, Alberta JA et al (2000) Sonic hedgehog—regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  CAS  PubMed  Google Scholar 

  18. Fancy SPJ, Baranzini SE, Zhao C et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fancy SP, Glasgow SM, Finley M, Rowitch DH, Deneen B (2012) Evidence that nuclear factor IA inhibits repair after white matter injury. Ann Neurol 72:224–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williams A, Piaton G, Aigrot MS et al (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    Article  PubMed  Google Scholar 

  21. Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125:841–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syed YA, Hand E, Mobius W et al (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31:3719–3728

    Article  CAS  PubMed  Google Scholar 

  23. Piaton G, Aigrot MS, Williams A et al (2011) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134:1156–1167

    Article  PubMed  Google Scholar 

  24. Xiang X, Zhang X, Huang QL (2012) Plexin A3 is involved in semaphorin 3F-mediated oligodendrocyte precursor cell migration. Neurosci Lett 530:127–132

    Article  CAS  PubMed  Google Scholar 

  25. Smith ES, Jonason A, Reilly C et al (2014) SEMA4D compromises blood-brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease. Neurobiol Dis 73C:254–268

    Google Scholar 

  26. Zhang HL, Wang J, Tang L (2014) Sema4D knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. Cell Biochem Biophys 68:489–496

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  28. Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319

    Article  CAS  PubMed  Google Scholar 

  29. Barres BA, Hart IK, Coles HS et al (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46

    Article  CAS  PubMed  Google Scholar 

  30. Gard AL, Pfeiffer SE (1993) Glial cell mitogens bFGF and PDGF differentially regulate development of O4+GalC- oligodendrocyte progenitors. Dev Biol 159:618–630

    Article  CAS  PubMed  Google Scholar 

  31. Curtis R, Cohen J, Fok-Seang J et al (1988) Development of macroglial cells in rat cerebellum. I. Use of antibodies to follow early in vivo development and migration of oligodendrocytes. J Neurocytol 17:43–54

    Article  CAS  PubMed  Google Scholar 

  32. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  33. Behar T, McMorris FA, Novotny EA, Barker JL, Dubois-Dalcq M (1988) Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J Neurosci Res 21:168–180

    Article  CAS  PubMed  Google Scholar 

  34. Gard AL, Williams WC 2nd, Burrell MR (1995) Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype (O4+GalC-) and response to cytokines using signal transducer LIFR beta. Dev Biol 167:596–608

    Article  CAS  PubMed  Google Scholar 

  35. Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260

    Article  CAS  PubMed  Google Scholar 

  36. Goldman JE, Geier SS, Hirano M (1986) Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture. J Neurosci 6:52–60

    CAS  PubMed  Google Scholar 

  37. Medina-Rodriguez EM, Arenzana FJ, Bribian A, de Castro F (2013) Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans. PLoS One 8, e81620

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moyon S, Dubessy AL, Aigrot MS et al (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 35:4–20

    Article  PubMed  Google Scholar 

  39. Sim FJ, McClain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29:934–941

    Google Scholar 

  40. Chen Y, Balasubramaniyan V, Peng J et al (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2:1044–1051

    Google Scholar 

  41. Noble M, Wren D, Wolswijk G (1992) The O-2A(adult) progenitor cell: a glial stem cell of the adult central nervous system. Semin Cell Biol 3:413–422

    Article  CAS  PubMed  Google Scholar 

  42. Wren D, Wolswijk G, Noble M (1992) In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. J Cell Biol 116:167–176

    Article  CAS  PubMed  Google Scholar 

  43. Engel U, Wolswijk G (1996) Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3. Glia 16:16–26

    Article  CAS  PubMed  Google Scholar 

  44. Temple S, Raff MC (1985) Differentiation of a bipotential glial progenitor cell in a single cell microculture. Nature 313:223–225

    Article  CAS  PubMed  Google Scholar 

  45. Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    Article  PubMed  Google Scholar 

  46. Eccleston PA, Silberberg DH (1985) Fibroblast growth factor is a mitogen for oligodendrocytes in vitro. Brain Res 353:315–318

    Article  CAS  PubMed  Google Scholar 

  47. Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol 10:67–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butt AM, Ibrahim M, Ruge FM, Berry M (1995) Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody. Rip Glia 14:185–197

    Article  CAS  PubMed  Google Scholar 

  49. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  50. Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83:311–327

    Article  CAS  PubMed  Google Scholar 

  51. Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    Google Scholar 

Download references

Disclosures

No conflicts of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. N. Kotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Syed, Y.A., Abdulla, S.A., Kotter, M.R.N. (2017). Studying the Effects of Semaphorins on Oligodendrocyte Lineage Cells. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics