Skip to main content

The Evolution of Gibbons and Siamang

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Gibbons and siamang (family Hylobatidae ) are the smallest of the extant apes and have geographically always been restricted to Asia. Their origin dates back to the beginning of the middle Miocene about 16.2 mya, a critical time when ape and human ancestors greatly diversified and when hominoids had left the African continent for the first time. The early Miocene was a warm period with equatorial forests expanding northward allowing early hominoids to colonize Europe and, through the Arabian-Indian corridor, also reach Asia. In contrast to the early Miocene, the late Miocene became a time of change caused by tectonic activity, changes in water currents, and cooling temperatures, which significantly impacted the World’s climate and in Asia led to the development of the characteristic monsoons, bringing pronounced seasonality to the region. At the end of the Miocene, many hominoid lineages had perished, but the small apes of Asia prospered and began to diversify. We suggest three key adaptations that were responsible for hylobatids success and survival: (1) perfection of forelimb suspensory locomotion (FSL) including regular, continuous ricochetal brachiation , (2) reduction of group size to small 2–4 adult groups, and (3) reduction in body size . These adaptations probably already characterized stem hylobatids since these traits are present in all extant hylobatids, before the family, after ~10.5 mya rapidly diversified into the four monophyletic genera Nomascus , Symphalangus , Hoolock , and Hylobates . The three key adaptations of hylobatids were probably all related to an overall net reduction of energy expenditure, which we hypothesize was the ultimate road to hylobatids’ success and survival under ecological conditions that were becoming increasingly challenging for large-bodied apes toward the late Miocene and into the Pliocene. In an arboreal environment, suspensory and ricochetal brachiation are more energy efficient than plantigrade quadrupedalism. In addition, brachiation increases access to difficult-to-reach, ripe fruit because it allows foraging along the thin twigs of a tree’s terminal branches. Perfection of the ancestral hominoid suspensory locomotion thus had a double-positive effect: it reduced energy expenditure and allowed hylobatids to become more competitive in fruit acquisition compared to less agile primates. Reducing average group size probably allowed hylobatids to decrease daily travel and within-group feeding competition, both mechanisms potentially adding to a decrease of net energy expenditure for foraging. Territoriality is a common corollary of pair-living in mammals and is also a characteristic of hylobatids, which further boosted a positive energy balance for the small Asian apes , because territoriality allows optimizing foraging efficiency through long-term knowledge of the spatiotemporal distribution of food sources and increased predictability of food availability. Finally, we hypothesize that the reduction in body size was perhaps the most important single adaptive response to the pressures of decreasing temperature and increasing aridity of Asian environments during the Miocene–Pleistocene transition. Body size reduction not only lowered absolute caloric need, particularly for females, but simultaneously facilitated optimizing forelimb suspensory locomotion to feed in terminal branches, which becomes uneconomical beyond the hylobatid body size. A small body may also have been the ultimate precondition for the evolution of small group size , because once females started to live in separate territories apart from each other for ecological reasons, it probably became inefficient for males to aim to defend more than one female. Pair-living may have relaxed sexual selection pressures on male morphology , which is so common in primates living in single-male/multi-female and multi-male/multi-female groups and also characterizes the large-bodied apes where large male body size often correlates with access to more females. The suite of morphological but also socio-ecological traits seen in hylobatids differ in significant ways from many traits seen in the great apes and comprehensively explain the extraordinary evolution of the small Asian apes .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The terms ‘hylobatids’, ‘small Asian apes’, ‘small apes’, and ‘gibbons and siamang’ are used synonymously in this chapter and volume to describe the family Hylobatidae (Gray 1870). The term ‘gibbons’ is used to mean the species of the genus ‘Hylobates’.

References

  • Agustí J, Sanz de Siria A, Garcés M (2003) Explaining the end of the hominoid experiment in Europe. J Hum Evol 45:145–153

    Article  PubMed  Google Scholar 

  • Agustí J, Cabrera L, Garcés M (2013) The Vallesian mammal turnover: a late miocene record of decoupled land-ocean evolution. Geobios 46:151–157

    Article  Google Scholar 

  • Ahsan F (2001) Socio-ecology of the hoolock gibbon (Hylobates hoolock) in two forests of Bangladesh. In: The apes: challenges for the 21st century. Conference Proceedings. Chicago Zoological Society, Chicago, pp 286–299

    Google Scholar 

  • Alba DM, Almécija, DeMiguel D, Fortuny J, Pérez de los Ríos M, Pina M, Robles JM, Moyà-Solà S (2015) Miocene small-bodied ape from Eurasia sheds light on hominoid evolution. Science 350:6260

    Google Scholar 

  • Anandam MV, Groves CP, Molur S, Rawson BM, Richardson MC, Roos C, Whittaker DJ (2013) Species accounts of Hylobatidae. In: Mittermeier RA, Rylands AB, Wilson DE (eds) Handbook of the mammals of the world, vol 3., PrimatesLynx Edicions, Barcelona, pp 778–791

    Google Scholar 

  • Andrews P (1992) Community evolution in forest habitats. J Hum Evol 22:423–438

    Article  Google Scholar 

  • Andrews P, Kelley J (2007) Middle Miocene dispersals of apes. Folia Primatol 78:328–343

    Article  PubMed  Google Scholar 

  • Andrews P, Begun DR, Zylstra M (1997) Interrelationships between functional morphology and paleoenvironments in Miocene hominoids. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils. Miocene hominoid, evolution and adaptation. Springer, US, pp 29–58

    Google Scholar 

  • Arnold ML, Meyer A (2006) Natural hybridization in primates: one evolutionary mechanism. Zoology 104:261–276

    Article  Google Scholar 

  • Asensio N, Brockelman WY, Malaivijitnond S, Reichard UH (2011) Gibbon travel paths are goal oriented. Anim Cogn 14:395–411

    Article  PubMed  Google Scholar 

  • Barelli C, Boesch C, Heistermann M, Reichard UH (2008) Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour 145:965–981

    Article  Google Scholar 

  • Barry J, Morgan M, Flynn L, Pilbeam D, Behrensmeyer A, Raza S et al (2002) Faunal and environmental change in the late Miocene Siwaliks of Northern Pakistan. Paleobiology 28:1–72

    Article  Google Scholar 

  • Bartlett TQ (2011) The Hylobatidae: small apes of Asia. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective, 2nd edn. Oxford University Press, New York, pp 300–312

    Google Scholar 

  • Begun DR (2005) Sivapithecus is east and Dryopithecus is west, and never the twain shall meet. Anthropol ScI 113:53–64

    Article  Google Scholar 

  • Begun DR (ed) (2007) Fossil record of Miocene hominoids. Handbook of Paleoanthropology, Springer, New York

    Google Scholar 

  • Begun DR (2013) The Miocene hominoid radiations. In: Begun DR (ed) A companion to paleoanthropology. Blackwell Publishing Ltd, Oxford, pp 397–416

    Chapter  Google Scholar 

  • Begun DR, Ward CV, Rose MD (eds) (1997) Function, phylogeny, and fossils: miocene hominoids evolution and adaptations. Plenum Press, New York

    Google Scholar 

  • Begun DR, Güleç E, Geraads D (2003) Dispersal patterns of Eurasian hominoids: implications from Turkey. Deinsea 10:23–39

    Google Scholar 

  • Begun DR, Nargolwalla MC, Kordos L (2012) European Miocene hominids and the origin of the African ape and human clade. Evol Anthropol 21:10–23

    Article  PubMed  Google Scholar 

  • Bernor RL (1983) Geochronology and zoogeographic relationships of Miocene hominoidea. In: Ciochon R (ed) New interpretations of ape and human ancestry. Springer, US, pp 21–64

    Chapter  Google Scholar 

  • Bertram JEA (2004) New perspectives on brachiation mechanics. Am J Phys Anthropol 125:100–117

    Article  Google Scholar 

  • Bradley BJ, Mundy NI (2008) The primate palette: the evolution of primate coloration. Evol Anthropol Issues News Rev 17:97–111

    Article  Google Scholar 

  • Brandon-Jones D, Eudey AA, Geissmann T, Groves CP, Melnick DJ, Morales JC et al (2004) Asian primate classification. Int J Primatol 25:97–164

    Article  Google Scholar 

  • Brockelman WY, Gittins SP (1984) Natural hybridization in the Hylobates lar species group: implications for speciation in gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 498–532

    Google Scholar 

  • Burness GP, Diamond J, Flannery T (2001) Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc Natl Acad Sci 98:14518–14523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cane MA, Molnar P (2001) Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411(6834):157–162

    Article  CAS  PubMed  Google Scholar 

  • Cannon CH, Leighton M (1994) Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps. Am J Phys Anthropol 93:505–524

    Article  CAS  PubMed  Google Scholar 

  • Cannon CH, Morley RJ, Bush AB (2009) The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Natl Acad Sci 106:11188–11193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capozzi O, Carbone L, Stanyon RR, Marra A, Yang F, Whelan CW et al (2012) A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons. Genome Res 22:2520–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caro T (2011) The functions of black-and-white coloration in mammals: review and synthesis. In: Stevens M, Merilaita S (eds) Animal camouflage: function and mechanism. Cambridge University Press, Cambridge, pp 298–329

    Google Scholar 

  • Carpenter CR (1940) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). Comp Psych Monogr 16:1–201

    Google Scholar 

  • Casanovas-Vilar I, Alba DM, Garcés M, Robles JM, Moyà-Solà S (2011) Updated chronology for the Miocene hominoid radiation in Western Eurasia. PNAS 108:5554–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerling TE, Mbua E, Kirera FM, Manthi FK, Grine FE, Leakey MG, Sponheimer M, Uno KT (2011) Diet of Paranthropus boisei in the early Pleistocene of East Africa. PNAS 108:9337–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LK (2007a) Gelenohumeral mobility in primates. Folia Primatol 78:1–18

    Article  PubMed  Google Scholar 

  • Chan LK (2007b) Scapular position in primates. Folia Primatol 78:19–35

    Article  PubMed  Google Scholar 

  • Chan LK (2008) The range of passive arm circumduction in primates: do hominoids really have more mobile shoulders? Am J Phys Anthropol 136:265–277

    Google Scholar 

  • Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJ, Vigilant L (2010) Mitochondrial genome sequences effectively reveal the phylogeny of hylobates gibbons. PLoS ONE 5:e14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Vigilant L (2012) A comparative analysis of Y chromosome and mtDNA phylogenies of the hylobates gibbons. BMC Evol Biol 12:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJ et al (2013) Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data. BMC Evol Biol 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin G (2005) Physical geography of the Gaoligong Shan area of southwest China in relation to biodiversity. Proc Calif Acad Sci 56:527

    Google Scholar 

  • Chatterjee HJ (2006) Phylogeny and biogeography of gibbons: a dispersal vicariance analysis. Int J Primatol 27:699–712

    Article  Google Scholar 

  • Chatterjee HJ (2009) Evolutionary relationships among the hylobatids: a biogeographic perspective. In: Lappan S, Whittaker DJ (eds) The hylobatids: new perspectives on small ape socioecology and population biology. Springer, New York, pp 13–36

    Google Scholar 

  • Chatterjee HJ (2016) The role of historical and fossil records in predicting changes in the spatial distribution of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 43–54

    Google Scholar 

  • Cheyne SM, Chivers DJ, Sugardjito J (2007) Covariation in the great calls of rehabilitant and wild gibbons Hylobates agilis albibarbis. Raffles Bull Zool 55:201–207

    Google Scholar 

  • Choudhury A (2006) The distribution and status of hoolock gibbon, Hoolock hoolock in Manipur, Meghalaya, Mizoram and Nagaland in Northeast India. Primate Conserv 20:79–87

    Article  Google Scholar 

  • Ciochon R, Long VT, Larick R, González L, Grün R, De Vos J et al (1996) Dated co-occurrence of Homo erectus and Gigantopithecus from Tham Khuyen cave, Vietnam. Proc Natl Acad Sci 93:3016–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke E, Reichard UH, Zuberbühler K (2006) The syntax and meaning of wild gibbon songs. PLoS ONE 1:e73. doi:10.1371/journal.pone.0000073

    Google Scholar 

  • Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1(12):875–880

    Article  CAS  Google Scholar 

  • Clift PD, Wan S, Blusztajn J (2014) Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth Sci Rev 130:86–102

    Article  CAS  Google Scholar 

  • Cowlishaw G (1982) Song function in gibbon. Behaviour 121:131–153

    Article  Google Scholar 

  • Dallmann R, Geissmann T (2009) Individual and geographical variability in the songs of wild silvery gibbons (Hylobates moloch) on Java, Indonesia. In: Lappan S, Whittaker DJ (eds) The gibbons. New prospectives on small apes socioecology and population biology, Springer, New York, pp 91–110

    Chapter  Google Scholar 

  • Das J, Biswas J, Bhattacherjee PC, Mohnot SM (2009) The distribution and abundance of hoolock gibbons in India. In: Lappan SM, Whittaker D (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, Berlin, pp 409–433

    Chapter  Google Scholar 

  • Delgado RA (2006) Sexual selection in the loud calls of male primates: signal content and function. Int J Primatol 27:5–25

    Article  Google Scholar 

  • Donoghue PC (2005) Saving the stem groups—a contradiction in terms? Paleobiology 31:553–558

    Google Scholar 

  • Eronen JT, Ataabadi MM, Micheels A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the late Miocene Pikermian chronofauna. Proc Natl Acad Sci 106:11867–11871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan PF, Jiang XL, Liu CM, Luo WS (2006) Polygynous mating system and behavioural reason of black crested gibbon (Nomascus concolor jingdongensis) at Dazhaizi, Mt Wuliang, Yunnan, China. Zool Res 27:216–220

    Google Scholar 

  • Fan PF, Xiao W, Huo S, Jiang XL (2009) Singing behavior and singing functions of black-crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Central Yunnan. China. Am J Primatol 71:539–547

    Article  PubMed  Google Scholar 

  • Fedy BC, Stutchbury BJM (2005) Territory defence in tropical birds: are females as aggressive as males? Behav Ecol Sociobiol 58:414–422

    Article  Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominid evolution. Folia Primatol 26:245–269

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (ed) (2013) Primate adaptation & evolution, 3rd edn. Academic Press Elsevier, Amsterdam

    Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctica ice sheet development, deep ocean circulation and global carbon cycling. Paleogeogr Paleoclimatol Paelaeocol 108:537–555

    Article  Google Scholar 

  • Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235

    Article  Google Scholar 

  • Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  CAS  PubMed  Google Scholar 

  • Geissmann T (1993) Evolution of communication in gibbons (hylobatidae). Dissertation, Zürich University

    Google Scholar 

  • Geissmann T (2000a) Gibbon songs and human music in an evolutionary perspective. In: Wallin N, Merker B, Brown S (eds) The origins of music. MIT Press, Cambridge, Massachusetts, pp 103–123

    Google Scholar 

  • Geissmann T (2000b) Duet songs of the siamang, Hylobates syndactylus: I. Structure and organization. Primate Rep 56:33–60

    Google Scholar 

  • Geissmann T (2002) Duet-splitting and the evolution of gibbon songs. Biol Rev Camb Philos Soc 77:57–76

    Article  PubMed  Google Scholar 

  • Geissmann T, Orgeldinger M (2000) The relationship between duet songs and pair bonds in siamangs, Hylobates syndactylus. Anim Behav 60:805–809

    Article  PubMed  Google Scholar 

  • Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  CAS  PubMed  Google Scholar 

  • Gilhooly LJ, Rayadin Y, Cheyne SM (2015) A comparison of hylobatid survey methods using triangulation on Müller’s gibbon (Hylobates muelleri) in Sungai Wain protection forest, East Kalimantan, Indonesia. Int J Primatol 36:567–582

    Article  Google Scholar 

  • Gittins SP, Raemaekers JJ (1980) Siamang, lar and agile gibbons. Malayan forest primates. Springer, US, pp 63–106

    Chapter  Google Scholar 

  • Gradstein FM, Ogg G, Schmitz M (2012) The geologic time scale 2012 2-volume set. Elsevier

    Google Scholar 

  • Gray JE (ed) (1870) Catalogue of monkeys, lemurs, and fruit-eating bats in the collection of the British Museum. British Museum Trustees, London

    Google Scholar 

  • Grehan JR, Schwartz JH (2009) Evolution of the second orangutan: phylogeny and biogeography of hominid origins. J Biogeogr 36:1823–1844

    Article  Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of gibbons. In: Rumbaugh DM (ed) Gibbon and siamang. Karger, Basel, pp 1–89

    Google Scholar 

  • Groves C (ed) (2001) Primate taxonomy. Smithsonian Institution Press, Washington

    Google Scholar 

  • Grueter CC, Isler K, Dixson BJ (2015) Are badges of status adaptive in large complex primate groups? Evol Hum Behav 36:398–406

    Google Scholar 

  • Haimoff EH (1984) Acoustic and organizational features of gibbon songs. In: Preuschoft H, Chivers D, Brockelman W, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 333–353

    Google Scholar 

  • Haimoff EH (1985) The organisation of song in Müllers gibbon (Hylobates muelleri). Int J Primatol 6:173–192

    Article  Google Scholar 

  • Haimoff EH (1986) Convergence in the duetting of 2 primates. J Hum Evol 15:51–59

    Article  Google Scholar 

  • Hall ML (2004) A review of hypotheses for the functions of avian duetting. Behav Ecol Sociobiol 55:415–430

    Article  Google Scholar 

  • Hall ML (2009) A review of vocal duetting in birds. Adv Stud Behav 40:67–121

    Article  Google Scholar 

  • Hall R (2011) Australia–SE Asia collision: plate tectonics and crustal flow. In: Hall R, Cottam MA,Wilson MEJ (eds) The SE Asian gateway: history and tectonics of the Australia–Asia collision, vol 355. Geological Society, Special Publications, London, pp 75–109

    Google Scholar 

  • Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ et al (2007) Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 316:238–240

    Article  CAS  PubMed  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (2010) Apes among the tangled branches of human origins. Science 327:532–534

    Article  CAS  PubMed  Google Scholar 

  • Harrison T (2016) The fossil record and evolutionary history of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 91–110

    Google Scholar 

  • Harrison T, Ji X, Zheng L (2008) Renewed investigations at the late Miocene hominoid locality of Leilao, Yunnan. China. Am J Phys Anthropol 135(S46):113

    Google Scholar 

  • Harzhauser M, Piller WE (2004) Benchmark data of a changing sea—Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Harzhauser M, Kroh A, Mandic O, Piller WE, Göhlich U, Reuter M, Berning B (2007) Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaways. Zool Anz 246:241–256

    Article  Google Scholar 

  • Hayashi S, Hayasaka K, Takenaka O, Horai S (1995) Molecular phylogeny of gibbons inferred from mitochondrial-DNA sequences—preliminary report. J Mol Evol 41:359–365

    Article  CAS  PubMed  Google Scholar 

  • Heizmann EP, Begun DR (2001) The oldest Eurasian hominoid. J Hum Evol 41:463–481

    Article  CAS  PubMed  Google Scholar 

  • Hobolth A, Dutheil JY, Hawks J, Schierup MH, Mailund T (2011) Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res 21:349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homke S, Vergés J, Van Der Beek P, Fernandez M, Saura E, Barbero L et al (2010) Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: evidence for a long-lived orogeny. Basin Res 22(5):659–680

    Article  Google Scholar 

  • Hunt KD (2004) The special demands of great ape locomotion. In: Russon AE, Begun ER (eds) The evolution of thought: Evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 172–189

    Chapter  Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387

    Article  Google Scholar 

  • Husson SJ, Wich SA, Marshall AJ, Dennis RD, Ancrenaz M, Brassey R et al (2009) Orangutan distribution, density, abundance and impacts of disturbance. In: Wich SA, Utami Atmoko SS, Setia TM, van Schaik CP (eds) Orangutans: geographic variation in behavioral ecology and conservation. Oxford University Press, Oxford, p 77–96

    Google Scholar 

  • Israfil H, Zehr SM, Mootnick AR, Ruvolo M, Steiper ME (2011) Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid Miocene radiation or sudden vicariance event. Mol Phylogenet Evol 58:447–455

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG (2000) Micro-and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26:15–52

    Article  Google Scholar 

  • Jablonski NG (2005) Primate homeland: forests and the evolution of primates during the Tertiary and Quaternary in Asia. Anthropol Sci 113:117–122

    Article  Google Scholar 

  • Jablonski NG, Chaplin G (2009) The fossil record of gibbons. In: Lappan SM, Whittaker D (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, Berlin, pp 111–130

    Chapter  Google Scholar 

  • Jablonski NG, Su DF, Flynn LJ, Ji X, Deng C, Kelley J et al (2014) The site of Shuitangba (Yunnan, China) preserves a unique terminal Miocene fauna. J Vertebr Paleontol 34:1251–1257

    Article  Google Scholar 

  • Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500

    Article  Google Scholar 

  • Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji XP, Jablonski NG, Su DF, Deng CL, Flynn LJ, You YS, Kelley J (2013) Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chin Sci Bull 58:3771–3779

    Article  CAS  Google Scholar 

  • Jiang X, Luo Z, Zhao S, Li R, Liu C (2006) Status and distribution pattern of black crested gibbon (Nomascus concolor jingdongensis) in Wuliang Mountains, Yunnan, China: implication of conservation. Primates 477:264–271

    Article  Google Scholar 

  • Jin C, Qin D, Pan W, Tang Z, Liu J, Wang Y, Deng C, Zhang Y, Dong W, Tong H (2008) A newly discovered Gigantopithecus fauna from Sanhe Cave, Chongzuo, Guangxi, South China. Chin Sci Bull 54:1–10

    Google Scholar 

  • Kamilar JM, Bradley BJ (2011) Interspecific variation in primate coat colour supports Gloger’s rule. J Biogeogr 38:2270–2277

    Article  Google Scholar 

  • Kappeler PM, van Schaik CP (eds) (2004) Sexual selection in primates: new and comparative perspectives. Cambridge University Press, Cambridge

    Google Scholar 

  • Kawagata S, Hayward BW, Gupta AK (2006) Benthic foraminiferal extinctions linked to late Pliocene-Pleistocene deep-sea circulation changes in the northern Indian Ocean (ODP Sites 722 and 758). Mar Micropaleontol 58:219–242

    Article  Google Scholar 

  • Keith SA, Waller MS, Geissmann T (2009) Vocal diversity of Kloss’s gibbons (Hylobates klossii) in the Mentawai Islands, Indonesia. In: Lappan S, Whittaker DJ (eds) The gibbons. New prospectives on small apes socioecology and population biology, Springer, New York, pp 51–71

    Chapter  Google Scholar 

  • Kim SK, Carbone L, Becquet C, Mootnick AR, Li DJ, de Jong PJ, Wall JD (2011) Patterns of genetic variation within and between gibbon species. Mol Biol Evol 28:2211–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koda H (2016) Gibbon songs: understanding the evolution and development of this unique form of vocal communication. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 347–357

    Google Scholar 

  • Kürschner WM, Kvaček Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci 105:449–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV et al (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. PNAS 105:10676–10680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Fang X, Song C, Pan B, Ma Y, Yan M (2014) Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quat Res 81:400–423

    Article  Google Scholar 

  • Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125:310–316

    Article  Google Scholar 

  • Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699

    Article  Google Scholar 

  • Louys J, Curnoe D, Tong H (2007) Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeogr Palaeoclimat Palaeoecol 243:152–173

    Article  Google Scholar 

  • Lukas D, Clutton-Brock TH (2013) The evolution of social monogamy in mammals. Science 341:526–530

    Article  CAS  PubMed  Google Scholar 

  • Ma YZ, Li JJ, Fang XM (1998) Pollen assemblage in 30.6–5.0 Ma redbeds of Linxia region and climate evolution. Chin Sci Bull 43(3):301–304

    Google Scholar 

  • Manfreda E, Mitteroecker P, Bookstein FL, Schaefer K (2006) Functional morphology of the first cervical vertebra in humans and nonhuman primates. Anat Rec B New Anat 289:184–194

    Article  PubMed  Google Scholar 

  • Marshall AJ (2009) Are montane forests demographic sinks for Bornean white-bearded gibbons Hylobates albibarbis? Biotropica 41:257–267

    Article  Google Scholar 

  • Marshall JT, Marshall E (1976) Gibbons and their territorial songs. Science 193:235–237

    Article  PubMed  Google Scholar 

  • Marshall JT, Sugardjito J (1986) Gibbon systematics. In: Swindler DR, Erwin J (eds) Comparative primate biology, vol 1., systematicsAlan R Liss, New York, pp 137–185

    Google Scholar 

  • Marshall-Ball L, Mann N, Slater PJB (2006) Multiple functions to duet singing: hidden conflicts and apparent cooperation. Anim Behav 71:823–831

    Article  Google Scholar 

  • Mather R (1992) A field study of hybrid gibbons in Central Kalimantan Indonesia. Dissertation, University of Cambridge, Cambridge

    Google Scholar 

  • Matsudaira K, Ishida T (2010) Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera. Mol Phylogenet Evol 55:454–459

    Article  PubMed  Google Scholar 

  • Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66

    Article  CAS  PubMed  Google Scholar 

  • McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 97:133–140

    Article  Google Scholar 

  • McNulty KP, Begun DR, Kelley J, Manthi FK, Mbua EN (2015) A systematic revision of Proconsul with the description of a new genus of early Miocene hominoid. J Hum Evol 84:42–61

    Article  PubMed  Google Scholar 

  • Meyer TJ, McLain AT, Oldenburg JM, Faulk C, Bourgeois MG, Conlin EM et al (2012) An Alu-based phylogeny of gibbons (Hylobatidae). Mol Biol Evol 29:3441–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michilsens F, Vereecke EE, D’Août K, Aerts P (2009) Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle. J Anat 215:335–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller KG, Wright JD, Fairbanks GG (1991) Unlocking the ice house: oligocene-miocene oxygen isotopes, eustasy, and marginal erosion. J Geophys Res 96:6829–6848

    Article  Google Scholar 

  • Miller KG, Wright JD, Browning JV, Kulpecz A, Kominz M, Naish TR et al (2012) High tide of the warm pliocene: implications of global sea level for Antarctic deglaciation. Geology 40:407–410

    Article  CAS  Google Scholar 

  • Misceo D, Capozzi O, Roberto R, Dell’oglio MP, Rocchi M, Stanyon R, Archidiacono N (2008) Tracking the complex flow of chromosome rearrangements from the Hominoidea ancestor to extant Hylobates and Nomascus gibbons by high-resolution synteny mapping. Genome Res 18:1530–1537

    Google Scholar 

  • Mitani JC (1984) The behavioral regulation of monogamy in gibbons (Hylobates muelleri). Behav Ecol Sociobiol 15:225–229

    Article  Google Scholar 

  • Mitani JC (1987) Territoriality and monogamy among agile gibbons (Hylobates agilis). Behav Ecol Sociobiol 20:265–269

    Article  Google Scholar 

  • Molnar P, Stock JM (2009) Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28(3)

    Google Scholar 

  • Mootnick AR (2006) Gibbon (Hylobatidae) species identification  recommended for rescue or breeding centers. Primate Conserv 21:103–138

    Google Scholar 

  • Mootnick AR, Groves C (2005) A new generic name for the Hoolock gibbon (Hylobatidae). Int J Primatol 26:971–976

    Google Scholar 

  • Morley RJ (ed) (2000) Origin and evolution of tropical rain forests. Wiley, New York

    Google Scholar 

  • Morley RJ, Flenley JR (1987) Late Cainozoic vegetational and environmental changes in the Malay archipelago. In: Whitmore TC (ed) Biogeographical evolution of the Malay Archipelago. Clarendon Press, Oxford, pp 50–59

    Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Nelson SV (2005) Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr Palaeoclimatol Palaeoecol 222:122–144

    Article  Google Scholar 

  • Nelson SV (2007) Isotopic reconstructions of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Paleogeogr Paleoclimatol Paleoecol 243:204–222

    Article  Google Scholar 

  • Noë R (2006) Cooperation experiments: coordination through communication versus acting apart together. Anim Behav 71:1–18

    Article  Google Scholar 

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38

    Article  Google Scholar 

  • Palkovacs EP (2003) Explaining adaptive shifts in body size on islands: a life history approach. Oikos 103:37–44

    Article  Google Scholar 

  • Patnaik R, Chauhan P (2009) India at the cross-roads of human evolution. J Biosci 5:729–747

    Article  Google Scholar 

  • Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Scheider MPC, Silva A, O’Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry GH, Dominy NJ (2009) Evolution of the human pygmy phenotype. Trends Ecol Evol 24:218–225

    Article  PubMed  Google Scholar 

  • Pilbeam D (1996) Genetic and morphological records of the Hominoidea and hominid origins: a synthesis. Mol Phylogenet Evol 5:155–168

    Article  CAS  PubMed  Google Scholar 

  • Plavcan JM (2012) Body size, size variation, and sexual size dimorphism in early Homo. Curr Anthropol 53:S409–S423

    Article  Google Scholar 

  • Pontzer H, Raichlen DA, Shumaker RW, Ocobock C, Wich SA (2010) Metabolic adaptation for low energy throughput in orangutans. PNAS 107:14048–14052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuschoft H, Schönwasser K-H, Witzel U (2016) Selective value of characteristic size parameters in hylobatids. A biomechanical approach to small ape size and morphology. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 227–263

    Google Scholar 

  • Prouty LA, Buchanan PD, Pollitzer WS, Mootnick AR (1983) Bunopithecus: a genus-level taxon for the hoolock gibbon (Hylobates hoolock). Am J Primatol 5:83–87

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342(6246):163–166

    Article  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    Article  PubMed  Google Scholar 

  • Raemaekers JJ, Raemaekers PM (1985) Field playback of loud calls to gibbons (Hylobates lar): territorial, sex-specific and species-specific responses. Anim Behav 33:481–493

    Article  Google Scholar 

  • Raemaekers JJ, Raemaekers PM, Haimoff EH (1984) Loud calls of the gibbon (Hylobates lar): repertoire, organization and context. Behaviour 91:146–189

    Article  Google Scholar 

  • Raia P, Meiri S (2006) The island rule in large mammals: paleontology meets ecology. Evolution 60:1731–1742

    Article  PubMed  Google Scholar 

  • Reichard UH, Barelli C (2008) Life history and reproductive strategies of Khao Yai Hylobates lar: implications for social evolution in apes. Int J Primatol 29:823–844

    Article  Google Scholar 

  • Reichard UH, Ganpanakngan M, Barelli C (2012) White-handed gibbons of Khao Yai: social flexibility, complex reproductive strategies, and a slow life history. In: Watts DP, Kappeler PM (eds) Long-term field studies of primates. Springer, Berlin, pp 237–258

    Chapter  Google Scholar 

  • Reichard UH, Croissier MM (2016) Hylobatid evolution in paleogeographic and paleoclimatic context. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 111–135

    Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Mandic O, Berning B, Rögl F, Kroh A, Aubry M-P, Wielandt-Schuster U, Hamedani A (2009) The Oligo-/Miocene Qom formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways. Int J Earth Sci 98:627–650

    Article  CAS  Google Scholar 

  • Rögl F (1999) Mediterranean and paratethys. Facts and hypotheses of an oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349

    Google Scholar 

  • Roos C, Geissmann T (2001) Molecular phylogeny of the major hylobatid divisions. Mol Phylogenet Evol 19:486–494

    Article  CAS  PubMed  Google Scholar 

  • Roos C, Boonratana R, Supriatna J, Fellowes JR, Rylands AB, Mittermeier RA (2013) An updated taxonomy of primates in Vietnam, Laos, Cambodia and China. Vietn J Primatol 2:13–26

    Google Scholar 

  • Roos C (2016) Phylogeny and classification of gibbons (hylobatidae). In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 151–164

    Google Scholar 

  • Ruggieri E, Herbert T, Lawrence KT, Lawrence CE (2009) Change point method for detecting regime shifts in paleoclimatic time series: application to δ18O time series of the Plio-Pleistocene. Paleoceanography 24:1

    Article  Google Scholar 

  • Schmidt NM, Jensen PM (2003) Changes in Mammalian body length over 175 years-adaptations to a fragmented landscape? Conserv Ecol 7:6

    Google Scholar 

  • Schmidt NM, Jensen PM (2005) Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol Soc 10:5

    Article  Google Scholar 

  • Setchell JM, Wickings EJ (2005) Dominance, status signals and coloration in male mandrills (Mandrillus sphinx). Ethology 111:25–50

    Article  Google Scholar 

  • Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG et al (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620–623

    Article  CAS  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (1994) Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770

    Article  CAS  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770

    Article  CAS  PubMed  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2008) Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem Geophys 9(2)

    Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  CAS  PubMed  Google Scholar 

  • Stevens NJ, Seiffert ER, O’Connor PM, Roberts EM, Schmitz MD, Krause C, Gorscak E, Ngasala S, Hieronymus TL, Temu J (2013) Palaeontological evidence for an oligocene divergence between old world monkeys and apes. Nature 497:611–614

    Article  CAS  PubMed  Google Scholar 

  • Stewart KJ, Sicotte P, Robbins MM (2001) Mountain gorillas of the virungas: a short history. In: Robbins MM, Sicotte P, Stewart KJ (eds) Mountain gorillas: three decades of research at Karisoke. Cambridge University Press, Cambridge, pp 1–26

    Chapter  Google Scholar 

  • Sun J, Zhang Z (2008) Palynological evidence for the mid-Miocene climatic optimum recorded in cenozoic sediments of the Tian Shan Range, northwestern China. Global Planet Change 64:53–68

    Article  Google Scholar 

  • Takacs Z, Morales JC, Geissmann T, Melnick DJ (2005) A complete species-level phylogeny of the hylobatidae based on mitochondrial ND3-ND4 gene sequences. Mol Phylogenet Evol 36:456–467

    Article  CAS  PubMed  Google Scholar 

  • Tembrock G (1974) Sound production of Hylobates and Symphalangus. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 3. Karger, Basel, pp 176–205

    Google Scholar 

  • Terleph TA, Malaivijitnond S, Reichard UH (2015) Lar gibbon (Hylobates lar) great call reveals individual caller identity. Am J Primatol 77:811–821

    Article  PubMed  Google Scholar 

  • Terleph TA, Malaivijitnond S, Reichard UH (2016) Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition. BMC Evol Biol 16:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Thinh VN, Mootnick AR, Geissmann T, Li M, Ziegler T, Agil M, Moisson P, Nadler T, Walter L, Roos C (2010a) Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evol Biol 10:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thinh VN, Rawson B, Hallam C, Kenyon M, Nadler T, Walter L, Roos C (2010b) Phylogeny and distribution of crested gibbons (genus Nomascus) based on mitochondrial cytochrome b gene sequence data. Am J Primatol 72:1047–1054

    Article  PubMed  Google Scholar 

  • Thinh VN, Hallam C, Roos C, Hammerschmidt K (2011) Concordance between vocal and genetic diversity in crested gibbons. BMC Evol Biol 11:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe SHS, Crompton K (2006) Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am J Phys Anthropol 131:184–401

    Article  Google Scholar 

  • Thorpe WH, Hall-Craggs J, Hooker B, Hooker T, Hutchins R (1972) Duetting and antiphonal song in birds: its extent and significance. Behaviour (Supplement No. 18:III, VII-XI):1–197

    Google Scholar 

  • Tilson RL (1976) Monogamy and duetting in an Old World monkey. Nature 263:320–321

    Article  Google Scholar 

  • Tyler DE (1993) The evolutionary history of the gibbons. In: Jablonski NG (ed) Evolving landscapes and evolving biotas of East Asia since the mid-Tertiary. The University of Hong Kong, Hong Kong, Centre of Asian Studies, pp 228–240

    Google Scholar 

  • Ungar PS, Kay RF (1995) The dietary adaptations of European Miocene catarrhines. Proc Natl Acad Sci 92:5479–5481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usherwood JR, Bertram JE (2003) Understanding brachiation: insight from a collisional perspective. J Exp Biol 206:1631–1642

    Article  PubMed  Google Scholar 

  • van Tuinen P, Ledbetter DH (1983) Cytogenetic comparison and phylogeny of three species of Hylobatidae. Am J Phys Anthropol 61:453–466

    Article  PubMed  Google Scholar 

  • van Valen L (1973) A new evolutionary law. Evol Theor 1:1–33

    Google Scholar 

  • Wanelik K, Abdulazis Cheyne SM (2013) Note-, phase- and song-specific acoustic variables contributing to the individuality of male duet song in the Bornean Southern gibbon (Hylobates albibarbis). Primates 54:159–170

    Article  PubMed  Google Scholar 

  • Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS et al (2008) Constraints on the early uplift history of the Tibetan Plateau. PNAS 105(13):4987–4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerhold T, Bickert T, Röhl U (2005) Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 217:205–222

    Article  Google Scholar 

  • Whittaker DJ, Morales JC, Melnick DJ (2007) Resolution of the Hylobates phylogeny: congruence of mitochondrial D-loop sequences with molecular, behavioral, and morphological data sets. Mol Phylogenet Evol 45:620–628

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavare S (2011) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16–31

    Article  CAS  PubMed  Google Scholar 

  • Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941

    Article  Google Scholar 

  • Woodruff DS, Turner LM (2009) The Indochinese-Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributions. J Biogeogr 36:803–821

    Article  Google Scholar 

  • Wright JD, Miller KG, Fairbanks RG (1992) Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography 7:357–389

    Article  Google Scholar 

  • Yanuar A (2009) The population distribution and abundance of siamangs (Symphalangus syndactylus) and agile gibbons (Hylobates agilis) in west central Sumatra, Indonesia. In: Lappan SM, Whittaker D (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, Berlin, pp 453–465

    Chapter  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zhao LX, Zhang LZ (2013) New fossil evidence and diet analysis of Gigantopithecus blacki and its distribution and extinction in South China. Quat Int 286:69–74

    Article  Google Scholar 

  • Zhisheng A, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

    Article  CAS  PubMed  Google Scholar 

  • Zihlmann AL, Mootnick AR, Underwood CE (2011) Anatomical contributions to hylobatid taxonomy and adaptation. Int J Primatol 32:865–877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. Reichard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichard, U.H., Barelli, C., Hirai, H., Nowak, M.G. (2016). The Evolution of Gibbons and Siamang. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_1

Download citation

Publish with us

Policies and ethics