Skip to main content

In Vivo Metal Ion Imaging Using Fluorescent Sensors

  • Protocol
  • First Online:
In Vivo Fluorescence Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1444))

  • 2170 Accesses

Abstract

In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  CAS  PubMed  Google Scholar 

  2. McRae R, Bagchi P, Sumalekshmy S et al (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  CAS  PubMed  Google Scholar 

  3. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch 465:347–359

    Article  CAS  PubMed  Google Scholar 

  5. Carter K, Young A, Palmer A (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lakowics JR (2006) Principles of fluorescence spectroscopy. Springer, New York, NY

    Book  Google Scholar 

  7. Ueno T, Urano Y, Setsukinai K et al (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126:14079–14085

    Article  CAS  PubMed  Google Scholar 

  8. Georgakoudi I, Mueller MG, Feld MS (2002) Intrinsic fluorescence spectroscopy of biological tissue, Fluorescence in Biomedicine. Marcel Dekker, New York, NY

    Google Scholar 

  9. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

  10. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  PubMed  Google Scholar 

  11. Guo Z, Park S, Yoon J et al (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43:16–29

    Article  PubMed  Google Scholar 

  12. Ghosh SK, Kim P, Zhang XA et al (2010) A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res 70:6119–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Egawa T, Hanaoka K, Koide Y et al (2011) Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging. J Am Chem Soc 133:14157–14159

    Article  CAS  PubMed  Google Scholar 

  14. Guo Z, Kim GH, Shin I et al (2012) A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. Biomaterials 33:7818–7827

    Article  CAS  PubMed  Google Scholar 

  15. Hirayama T, Van de Bittner GC, Gray LW et al (2012) Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc Natl Acad Sci U S A 109:2228–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortiz de Montellano P (2005) Cytochrome P450: structure, mechanism, and biochemistry. Plenum, New York, NY

    Book  Google Scholar 

  17. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  CAS  PubMed  Google Scholar 

  18. Valeur B (2001) Effect of polarity on fluorescence emission. polarity probes, Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genevieve C. Van de Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van de Bittner, G.C., Hirayama, T. (2016). In Vivo Metal Ion Imaging Using Fluorescent Sensors. In: Bai, M. (eds) In Vivo Fluorescence Imaging. Methods in Molecular Biology, vol 1444. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3721-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3721-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3719-6

  • Online ISBN: 978-1-4939-3721-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics