Skip to main content

Germ-Free Mice Model for Studying Host–Microbial Interactions

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Germ-free (GF) mice are a relevant model system to study host–microbial interactions in health and disease. In this chapter, we underscore the importance of using GF mice model to study host–microbial interactions in obesity, immune development and gastrointestinal physiology by reviewing current literature. Furthermore, we also provide a brief protocol on how to setup a gnotobiotic facility in order to properly maintain and assess GF status in mice colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C (2012) Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8:36–45

    Article  CAS  Google Scholar 

  3. Moschen AR, Wieser V, Tilg H (2012) Dietary factors: major regulators of the gut’s microbiota. Gut Liver 6:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon HA, Pesti L (1971) The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 35:390–429

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pasteur L (1885) Observations relatives à la note de M. Duclaux. Compte Rendu Académie des Sciences 100:68–69

    Google Scholar 

  6. Nuttall G, Thierfelder H (1895) Tierisches Leben ohne Bakterien im Verdauungskanal. Hoppe Seyler’s Zeitschrift Physiol Chem 21:109–112

    Article  Google Scholar 

  7. Gordon HA (1965) A bioactive substance in the caecum of germ-free animals: demonstration of a bioactive substance in caecal contents of germ-free animals. Nature 205:571–572

    Article  CAS  Google Scholar 

  8. Bruckner G (1997) How it started—and what is MAS? In: Heidt PJ, Volker R, van der Waaij D (eds) Old Herborn University Seminar, Monograph 9. Herborn Litterae, Herborn-Dill, Germany, pp 24–34

    Google Scholar 

  9. Reyniers JA (1959) The pure-culture concept and gnotobiotics. Ann N Y Acad Sci 78:3–16

    Article  Google Scholar 

  10. Williams SC (2014) Gnotobiotics. Proc Natl Acad Sci U S A 111:1661

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schaedler RW, Dubos R, Costello R (1965) The development of the bacterial flora in the gastrointestinal tract of mice. J Exp Med 122:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  14. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  CAS  PubMed  Google Scholar 

  15. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wiles MV, Taft RA (2010) The sophisticated mouse: protecting a precious reagent. Methods Mol Biol 602:23–36

    Article  PubMed  Google Scholar 

  18. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  19. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  CAS  PubMed  Google Scholar 

  20. Bogue MA, Grubb SC, Maddatu TP, Bult CJ (2007) Mouse Phenome Database (MPD). Nucleic Acids Res 35:D643–D649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  23. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  Google Scholar 

  27. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B et al (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357:741–752

    Article  PubMed  Google Scholar 

  28. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, Fändriks L, le Roux CW, Nielsen J, Bäckhed F (2015) Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab 22:228–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplan JL, Shi HN, Walker WA (2011) The role of microbes in developmental immunologic programming. Pediatr Res 69:465–472

    Article  PubMed  Google Scholar 

  30. Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J, Cunningham C, Le Gros G, von Mutius E, Pearce N (2008) Farm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 32:603–611

    Article  CAS  PubMed  Google Scholar 

  31. Blümer N, Herz U, Wegmann M, Renz H (2005) Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 35:397–402

    Article  PubMed  Google Scholar 

  32. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  33. Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  34. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G, Worbs T, Macpherson AJ, Förster R (2006) Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol 177:6824–6832

    Article  CAS  PubMed  Google Scholar 

  36. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H et al (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64

    Article  CAS  PubMed  Google Scholar 

  37. Cario E (2013) Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol 29:85–91

    Article  CAS  PubMed  Google Scholar 

  38. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw MH, Kim YG, Núñez G (2012) NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohkubo T, Tsuda M, Tamura M, Yamamura M (1990) Impaired superoxide production in peripheral blood neutrophils of germ-free rats. Scand J Immunol 32:727–729

    Article  CAS  PubMed  Google Scholar 

  40. Mørland B, Midtvedt T (1984) Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice. Infect Immun 44:750–752

    PubMed  PubMed Central  Google Scholar 

  41. Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, Marteau P, Doré J (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111

    Article  PubMed  Google Scholar 

  42. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3:4–14

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  45. Sanderson IR, Walker WA (2007) TLRs in the Gut I. The role of TLRs/Nods in intestinal development and homeostasis. Am J Physiol Gastrointest Liver Physiol 292:G6–G10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132:1359–1374

    Article  CAS  PubMed  Google Scholar 

  47. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  PubMed  Google Scholar 

  49. Lomasney KW, Houston A, Shanahan F, Dinan TG, Cryan JF, Hyland NP (2014) Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon. Neurogastroenterol Motil 26:887–890

    Article  CAS  PubMed  Google Scholar 

  50. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S (2012) Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143:1006–1016.e1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126:301–304

    Article  CAS  PubMed  Google Scholar 

  52. Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M et al (2013) Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144:967–977

    Article  PubMed  PubMed Central  Google Scholar 

  53. Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T (2001) Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 280:G368–G380

    CAS  PubMed  Google Scholar 

  54. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaji I, Akiba Y, Said H, Narimatsu K, Kaunitz JD (2015) Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol 172:4655–4670

    Article  CAS  PubMed  Google Scholar 

  57. Stoner MC, Scherr AM, Lee JA, Wolfe LG, Kellum JM (2000) Nitric oxide is a neurotransmitter in the chloride secretory response to serotonin in rat colon. Surgery 128:240–245

    Article  CAS  PubMed  Google Scholar 

  58. Kadowaki M, Gershon MD, Kuwahara A (1996) Is nitric oxide involved in 5-HT-induced fluid secretion in the gut? Behav Brain Res 73:293–296

    Article  CAS  PubMed  Google Scholar 

  59. Martínez-Augustin O, Romero-Calvo I, Suárez MD, Zarzuelo A, de Medina FS (2009) Molecular bases of impaired water and ion movements in inflammatory bowel diseases. Inflamm Bowel Dis 15:114–127

    Article  PubMed  Google Scholar 

  60. Gordon HA, Wostmann BS (2012) Chronic mild diarrhea in germ free rodents: a model portraying host-flora synergism. In: Heneghan J (ed) Germfree research: biological effect of gnotobiotic environments. Elsevier, Amsterdam

    Google Scholar 

  61. Coates ME, Hewitt D, Salter DN (2012) Protein metabolism in germ free and conventional chick. In: Heneghan J (ed) Germfree research: biological effect of gnotobiotic environments. Elsevier, Amsterdam

    Google Scholar 

  62. Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T (1998) Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim 47:151–158

    Article  CAS  PubMed  Google Scholar 

  63. Arvidsson C, Hallén A, Bäckhed F (2012) Generating and analyzing germ-free mice. Curr Protoc Mouse Biol 2:307–316

    PubMed  Google Scholar 

  64. Fontaine CA, Skorupski AM, Vowles CJ, Anderson NE, Poe SA, Eaton KA (2015) How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 6:225–233

    Article  PubMed  Google Scholar 

  65. Fridland GH (2010) Science AAfLA: gnotobiotics. In: LATG: laboratory animal technologist training manual. Drumwright & Co, Germantown, TN, pp 117–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna C. Kashyap M.B.B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bhattarai, Y., Kashyap, P.C. (2016). Germ-Free Mice Model for Studying Host–Microbial Interactions. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics