Skip to main content

Gene Silencing Delivery Methods: Lipid-Mediated and Electroporation Transfection Protocols

  • Protocol
  • First Online:
Molecular Genetics of Asthma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1434))

Abstract

The RNA interference (RNAi) plays an important role in regulation of gene expression. It is a mechanism used by many organisms to silence the expression of genes that control different processes in the cell. The double strand (ds) RNA molecule inhibits gene expression of a targeted gene with high specificity and selectivity.

Different types of small ribonucleic acid molecules, microRNA (miRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and the piwi RNA (piRNA) are involved in the RNA interference. RNAi is a relevant research tool in cell cultures and in vivo experiments because synthetic dsRNA introduced into cells can selectively silence specific target genes.

Here, we describe a general guide for gene silencing mediated by siRNA, focusing on the most used delivery methods: lipid-mediated and electroporation transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein E, Caudy AA, Hammond SM et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  2. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  3. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  CAS  PubMed  Google Scholar 

  5. Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141:3458–3471

    Article  CAS  PubMed  Google Scholar 

  7. Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    Article  CAS  PubMed  Google Scholar 

  8. Gitlin L, Karelsky S, Andino R (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430–434

    Article  CAS  PubMed  Google Scholar 

  9. Gitlin L, Andino R (2003) Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J Virol 77:7159–7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–314

    Article  CAS  PubMed  Google Scholar 

  11. Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124:12–25

    Article  CAS  PubMed  Google Scholar 

  12. Aigner A (2007) Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 76:9–21

    Article  CAS  PubMed  Google Scholar 

  13. Rao DD, Senzer N, Cleary MA et al (2009) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development? Cancer Gene Ther 16:807–809

    Article  CAS  PubMed  Google Scholar 

  14. Editorial (2003) Whither RNAi? Nat Cell Biol 5:489–490

    Article  Google Scholar 

  15. Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12

    Article  PubMed  Google Scholar 

  18. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  19. Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Straka M, Boese Q (2010) Current topics in RNAi: why rational pooling of siRNA is SMART. Thermo Fisher Scientific Inc., Waltham, MA, USA

    Google Scholar 

  21. Arvey A, Larsson E, Sander C et al (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363

    Article  PubMed  PubMed Central  Google Scholar 

  22. Larsson E, Sander C, Marks D (2010) mRNA turnover rate limits siRNA and microRNA efficacy. Mol Syst Biol 6:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción García-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

García-Sánchez, A., Marqués-García, F. (2016). Gene Silencing Delivery Methods: Lipid-Mediated and Electroporation Transfection Protocols. In: Isidoro García, M. (eds) Molecular Genetics of Asthma. Methods in Molecular Biology, vol 1434. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3652-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3652-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3650-2

  • Online ISBN: 978-1-4939-3652-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics