Skip to main content

In Vivo Analysis of Intestinal Mononuclear Phagocytes

  • Protocol
  • First Online:
Book cover Dendritic Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1423))

Abstract

The study of the intestinal dendritic cell (DC) compartment, its homeostasis, regulation, and response to challenges calls for the investigation within the physiological tissue context comprising the unique anatomic constellation of the epithelial single cell layer and the luminal microbiota, as well as neighboring immune and nonimmune cells. Here we provide protocols we developed that use a combination of conditional cell ablation, conditional compartment mutagenesis, and adoptive precursor transfers to study DC and other intestinal mononuclear phagocytes in in vivo context. We will highlight pitfalls and strengths of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farache J, Zigmond E, Shakhar G, Jung S (2013) Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol Cell Biol 91(3):232–239

    Article  CAS  PubMed  Google Scholar 

  2. Edelson BT, KC W, Juang R, Kohyama M, Benoit LA et al (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α + conventional dendritic cells. J Exp Med 207(4):823–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M et al (2009) The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206(13):3115–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES et al (2015) Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ t cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 8(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D et al (2009) Origin of the lamina propria dendritic cell network. Immunity 31(3):513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT et al (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Welty NE, Staley C, Ghilardi N, Sadowsky MJ, Igyártó BZ, Kaplan DH (2013) Intestinal lamina propria dendritic cells maintain t cell homeostasis but do not affect commensalism. J Exp Med 210(10):2011–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K et al (2013) Irf4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal il-17 cytokine responses. Immunity 38(5):970–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hägerbrand K et al (2013) Irf4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal t helper 17 cell differentiation. Immunity 38(5):958–969

    Article  CAS  PubMed  Google Scholar 

  10. Klebanoff CA, Spencer SP, Torabi-Parizi P, Grainger JR, Roychoudhuri R et al (2013) Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U et al (2013) Intestinal CD103- dendritic cells migrate in lymph and prime effector t cells. Mucosal Immunol 6(1):104–113

    Article  CAS  PubMed  Google Scholar 

  12. Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K et al (2015) CCR2 + CD103- intestinal dendritic cells develop from dc-committed precursors and induce interleukin-17 production by t cells. Mucosal Immunol 8:327–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y et al (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31(3):502–512

    Article  CAS  PubMed  Google Scholar 

  14. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT et al (2012) Ly6chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37(6):1076–1090

    Article  CAS  PubMed  Google Scholar 

  16. Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40(5):642–656

    Article  CAS  PubMed  Google Scholar 

  17. Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM et al (2013) Intestinal monocytes and macrophages are required for t cell polarization in response to citrobacter rodentium. J Exp Med 210(10):2025–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niess JH, Brand S, Gu X, Landsman L, Jung S et al (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254–258

    Article  CAS  PubMed  Google Scholar 

  19. Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C et al (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42(12):3150–3166

    Article  CAS  PubMed  Google Scholar 

  20. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404

    Article  CAS  PubMed  Google Scholar 

  21. Rivollier A, He J, Kole A, Valatas V, Kelsall BL (2012) Inflammation switches the differentiation program of ly6chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med 209(1):139–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP et al (2014) Microbiota-dependent crosstalk between macrophages and ilc3 promotes intestinal homeostasis. Science 343(6178):1249288

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diehl GE, Longman RS, Zhang J-X, Breart B, Galan C et al (2013) Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494(7435):116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S et al (2014) Macrophage-restricted interleukin-10 receptor deficiency, but not il-10 deficiency, causes severe spontaneous colitis. Immunity 40(5):720–733

    Article  CAS  PubMed  Google Scholar 

  25. Pappenheimer AM, Harper AA, Moynihan M, Brockes JP (1982) Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J Infect Dis 145(1):94–102

    Article  CAS  PubMed  Google Scholar 

  26. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell 15(1):245–250

    Article  CAS  PubMed  Google Scholar 

  27. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M et al (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746–750

    Article  CAS  PubMed  Google Scholar 

  28. Jung S, Unutmaz D, Wong P, Sano G-I, De los Santos K et al (2002) In vivo depletion of CD11c + dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17(2):211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bar-On L, Jung S (2010) Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 234(1):76–89

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14(3):282–289

    Article  CAS  PubMed  Google Scholar 

  31. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC et al (2006) Transforming growth factor-beta induces development of the Th17 lineage. Nature 441(7090):231–234

    Article  CAS  PubMed  Google Scholar 

  32. Aychek T, Mildner A, Yona S, Ki-Wook Kim, Lampl N, Reich-Zeliger S, Boon L, Yogev N, Waisman A, Cua D. J, Jung S (2015) IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology. Nat Commun 6:6525. doi: 10.1038/ncomms7525PMCID

    Google Scholar 

  33. Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B et al (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204(1):171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW et al (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaft T, Sapoznikov A, Krauthgamer R, Littman DR, Jung S (2005) CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells. J Immunol 175(10):6428–6435

    Article  CAS  PubMed  Google Scholar 

  36. Zammit DJ, Cauley LS, Pham Q-M, Lefrançois L (2005) Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22(5):561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M et al (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201(6):981–991

    Article  PubMed  PubMed Central  Google Scholar 

  38. Landsman L, Jung S (2007) Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179(6):3488–3494

    Article  CAS  PubMed  Google Scholar 

  39. Sapoznikov A, Fischer JAA, Zaft T, Krauthgamer R, Dzionek A, Jung S (2007) Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 204(8):1923–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to b cells in bone marrow niches. Nat Immunol 9(4):388–395

    Article  CAS  PubMed  Google Scholar 

  41. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311(5757):83–87

    Article  CAS  PubMed  Google Scholar 

  42. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  43. Landsman L, Varol C, Jung S (2007) Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 178(4):2000–2007

    Article  CAS  PubMed  Google Scholar 

  44. Imai T, Hieshima K, Haskell C, Baba M, Nagira M et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  CAS  PubMed  Google Scholar 

  45. Probst HC, Tschannen K, Odermatt B, Schwendener R, Zinkernagel RM, Van Den Broek M (2005) Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin Exp Immunol 141(3):398–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hebel K, Griewank K, Inamine A, Chang H-D, Müller-Hilke B et al (2006) Plasma cell differentiation in t-independent type 2 immune responses is independent of cd11c (high) dendritic cells. Eur J Immunol 36(11):2912–2919

    Google Scholar 

  47. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26(4):503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brocker T, Riedinger M, Karjalainen K (1997) Targeted expression of major histocompatibility complex MHC class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185(3):541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the past and present members of the Jung lab for sharing their protocols. This work was supported by the European Research Council (340345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Curato, C., Bernshtein, B., Aychek, T., Jung, S. (2016). In Vivo Analysis of Intestinal Mononuclear Phagocytes. In: Segura, E., Onai, N. (eds) Dendritic Cell Protocols. Methods in Molecular Biology, vol 1423. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3606-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3606-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3604-5

  • Online ISBN: 978-1-4939-3606-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics