Skip to main content

Tips on How to Collect and Administer the Mesenchymal Stem Cell Secretome for Central Nervous System Applications

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Human mesenchymal stem cells (hMSCs) have been proposed as possible therapeutic agents for central nervous system (CNS) disorders. Recently, it has been suggested that their effects are mostly mediated through their secretome, which contains a number of neuroregulatory molecules capable of increasing cell proliferation, differentiation, and survival in different physiological conditions. Here, we present an overview of the hMSC secretome as a possible candidate in the creation of new cell-free therapies, demonstrating the process of its collection and route of administration, focusing our attention on their effects in CNS regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogel S, Gubernator M, Minger SL (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Qu X, Zhao RC (2011) Mesenchymal stem cells hold promise for regenerative medicine. Front Med 5:372–378

    Article  PubMed  Google Scholar 

  3. Hirai H (2002) Stem cells and regenerative medicine. Hum Cell 15:190–198

    Article  PubMed  Google Scholar 

  4. Uccelli A, Benvenuto F, Laroni A et al (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24: 59–64

    Article  CAS  PubMed  Google Scholar 

  5. Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10:649–656

    Article  CAS  PubMed  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  7. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  9. Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  11. Fukuchi Y, Nakajima H, Sugiyama D et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658

    Article  CAS  PubMed  Google Scholar 

  12. Abumaree MH, Al Jumah MA, Kalionis B et al (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev 9:16–31

    Article  CAS  PubMed  Google Scholar 

  13. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109: 235–242

    Article  CAS  PubMed  Google Scholar 

  14. Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  15. Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paul G, Özen I, Christophersen NS et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7:e35577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  18. Meirelles Lda S, Fontes AM, Covas DT et al (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Article  PubMed  Google Scholar 

  19. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889

    Article  CAS  PubMed  Google Scholar 

  20. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  21. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mitchell KE, Weiss ML, Mitchell BM et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Article  CAS  PubMed  Google Scholar 

  23. Alaminos M, Pérez-Köhler B, Garzón I et al (2010) Transdifferentiation potentiality of human Wharton’s jelly stem cells towards vascular endothelial cells. J Cell Physiol 223:640–647

    CAS  PubMed  Google Scholar 

  24. Liqing Y, Jia G, Jiqing C et al (2011) Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport 22:370–373

    Article  PubMed  Google Scholar 

  25. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maltman DJ, Hardy SA, Przyborski SA (2011) Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 59:347–356

    CAS  PubMed  Google Scholar 

  27. Teixeira FG, Carvalho MM, Sousa N et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70:3871–3882

    Article  CAS  PubMed  Google Scholar 

  28. Drago D, Cossetti C, Iraci N et al (2013) The stem cell secretome and its role in brain repair. Biochimie 95:2271–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Estrada R, Li N, Sarojini H et al (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219(3):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salgado AJ, Gimble JM (2013) Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie 95:2195

    Article  CAS  PubMed  Google Scholar 

  32. Meyerrose T, Olson S, Pontow S et al (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62:1167–1174

    Article  CAS  PubMed  Google Scholar 

  33. Skalnikova H, Motlik J, Gadher SJ et al (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11:691–708

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Tredget EE, Wu PY et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886

    Article  PubMed  PubMed Central  Google Scholar 

  35. Block GJ, Ohkouchi S, Fung F et al (2009) Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells 27:670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi Y, Hu G, Su J et al (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20:510–518

    Article  CAS  PubMed  Google Scholar 

  37. Kode JA, Mukherjee S, Joglekar MV et al (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11:377–391

    Article  CAS  PubMed  Google Scholar 

  38. Puissant B, Barreau C, Bourin P et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129

    Article  PubMed  Google Scholar 

  39. Bonfield TL, Nolan Koloze MT, Lennon DP et al (2010) Defining human mesenchymal stem cell efficacy in vivo. J Inflamm (Lond) 7:51

    Article  Google Scholar 

  40. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  41. Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  42. Nakano N, Nakai Y, Seo TB et al (2010) Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett 483:57–61

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Whyte N, Niyibizi C (2012) Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: Implications for paracrine activities in bone regeneration. Biochem Biophys Res Commun 426:475–479

    Article  CAS  PubMed  Google Scholar 

  44. Lee JW, Fang X, Krasnodembskaya A et al (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Qu J, Cao L et al (2008) Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 214:472–481

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen BK, Maltais S, Perrault LP et al (2010) Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 3:547–558

    Article  PubMed  Google Scholar 

  47. Shabbir A, Zisa D, Suzuki G et al (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ribeiro CA, Fraga JS, Grãos M et al (2012) The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 3:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ribeiro CA, Salgado AJ, Fraga JS et al (2011) The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J Tissue Eng Regen Med 5:668–672

    Article  CAS  PubMed  Google Scholar 

  50. Salgado AJ, Fraga JS, Mesquita AR et al (2010) Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells Dev 19:1067–1074

    Article  CAS  PubMed  Google Scholar 

  51. Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

  52. Jin GZ, Cho SJ, Lee YS et al (2010) Intrastriatal grafts of mesenchymal stem cells in adult intact rats can elevate tyrosine hydroxylase expression and dopamine levels. Cell Biol Int 34:135–140

    CAS  Google Scholar 

  53. McCoy MK, Martinez TN, Ruhn KA et al (2008) Autologous transplants of adipose-derived adult stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210:14–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu YS, Cheng YC, Lin MY et al (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124

    Article  PubMed  Google Scholar 

  55. Gu W, Zhang F, Xue Q et al (2010) Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology 30:205–217

    Article  PubMed  Google Scholar 

  56. Lopatina T, Kalinina N, Karagyaur M et al (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6:e17899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang CC, Shih YH, Ko MH et al (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 3:e3336

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wakabayashi K, Nagai A, Sheikh AM et al (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025

    CAS  PubMed  Google Scholar 

  59. Koh SH, Kim KS, Choi MR et al (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    Article  CAS  PubMed  Google Scholar 

  60. Sasportas LS, Kasmieh R, Wakimoto H et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106:4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Semedo P, Palasio CG, Oliveira CD et al (2009) Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int Immunopharmacol 9:677–682

    Article  CAS  PubMed  Google Scholar 

  62. Abdi R, Fiorina P, Adra CN et al (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang YC, Parolini O, Deng L (2013) The potential role of microvesicles in mesenchymal stem cell-based therapy. Stem Cells Dev 22:841–844

    Article  CAS  PubMed  Google Scholar 

  65. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  66. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492

    Article  PubMed  Google Scholar 

  67. Lai RC, Yeo RW, Tan KH et al (2013) Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 8:197–209

    Article  CAS  PubMed  Google Scholar 

  68. Zhou Y, Xu H, Xu W et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rivera FJ, Siebzehnrubl FA, Kandasamy M et al (2009) Mesenchymal stem cells promote oligodendroglial differentiation in hippocampal slice cultures. Cell Physiol Biochem 24:317–324

    Article  CAS  PubMed  Google Scholar 

  70. Sadan O, Shemesh N, Cohen Y et al (2009) Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr Med Assoc J 11:201–204

    PubMed  Google Scholar 

  71. English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7: 431–442

    Article  CAS  PubMed  Google Scholar 

  72. Paxinos G, Watson C (2004) Rat brain in stereotaxic coordinates, 5th edn. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Salgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teixeira, F.G., Serra, S.C., Salgado, A.J. (2016). Tips on How to Collect and Administer the Mesenchymal Stem Cell Secretome for Central Nervous System Applications. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics