Skip to main content

Tracing Plant Defense Responses in Roots upon MAMP/DAMP Treatment

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1398))

Abstract

This chapter describes how to apply microbe-associated molecular pattern (MAMP) or damage-associated molecular pattern (DAMP) solutions to Arabidopsis roots to trace defense responses in the root. Plants sense the presence of microbes via the perception of MAMPs or DAMPs by surface-localized pattern recognition receptors. The mechanisms governing plant root immunity are poorly characterized compared with those underlying plant immunity in the leaf, despite the fact that plant roots constantly interact with countless microbes living in soils that carry potential MAMPs and could stimulate the production of plant-derived DAMPs during colonization. To understand how a plant root immune system detects and reacts to the potential sources of a stimulus, we describe a simple method to monitor activation of root immunity upon MAMP/DAMP treatment by measuring relative expression of defense-related genes by RT-qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  2. Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14(4):351–357

    Article  CAS  PubMed  Google Scholar 

  3. Fontana MF, Vance RE (2011) Two signal models in innate immunity. Immunol Rev 243(1):26–39

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  PubMed  Google Scholar 

  5. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22(2):508–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hiruma K, Fukunaga S, Bednarek P, Pislewska-Bednarek M, Watanabe S, Narusaka Y, Shirasu K, Takano Y (2013) Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc Natl Acad Sci U S A 110(23):9589–9594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K, Saijo Y (2014) The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J 33(1):62–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Saijo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hiruma, K., Saijo, Y. (2016). Tracing Plant Defense Responses in Roots upon MAMP/DAMP Treatment. In: Duque, P. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 1398. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3356-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3356-3_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3354-9

  • Online ISBN: 978-1-4939-3356-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics