Skip to main content

Systems Medicine in Oncology: Signaling Network Modeling and New-Generation Decision-Support Systems

  • Protocol
Book cover Systems Medicine

Abstract

Two different perspectives are the main focus of this book chapter: (1) A perspective that looks to the future, with the goal of devising rational associations of targeted inhibitors against distinct altered signaling-network pathways. This goal implies a sufficiently in-depth molecular diagnosis of the personal cancer of a given patient. A sufficiently robust and extended dynamic modeling will suggest rational combinations of the abovementioned oncoprotein inhibitors. The work toward new selective drugs, in the field of medicinal chemistry, is very intensive. Rational associations of selective drug inhibitors will become progressively a more realistic goal within the next 3–5 years. Toward the possibility of an implementation in standard oncologic structures of technologically sufficiently advanced countries, new (legal) rules probably will have to be established through a consensus process, at the level of both diagnostic and therapeutic behaviors.

(2) The cancer patient of today is not the patient of 5–10 years from now. How to support the choice of the most convenient (and already clinically allowed) treatment for an individual cancer patient, as of today? We will consider the present level of artificial intelligence (AI) sophistication and the continuous feeding, updating, and integration of cancer-related new data, in AI systems. We will also report briefly about one of the most important projects in this field: IBM Watson US Cancer Centers. Allowing for a temporal shift, in the long term the two perspectives should move in the same direction, with a necessary time lag between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoadley KA, Yau C, Wolf DM et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumors. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  3. Zack TI, Schumacher SE, Carter SL et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lacombe D, Tejpar S, Salgado R et al (2014) European perspective for effective cancer drug development. Nat Rev Clin Oncol 11:492–498

    Article  PubMed  Google Scholar 

  5. Zardavas D, Maetens M, Irrthum A et al (2014) The AURORA initiative for metastatic breast cancer. Br J Cancer 111:1881–1887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153:17–37

    Article  CAS  PubMed  Google Scholar 

  7. Amirkhah R, Schmitz U, Linnebacher M et al (2014) MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosom Cancer 54:129–141

    Article  Google Scholar 

  8. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Catalogue of Somatic Mutation in Cancer (COSMIC). http://www.sanger.ac.uk/genetics/CPG/cosmic

  10. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. The Cancer Genome Atlas (TCGA). http://cancergenome.nih.gov/

  12. International Cancer Genome Consortium (ICGC). The ICGC Data Portal. https://icgc.org/

  13. The cBioPortal for Cancer Genomics. http://www.cbioportal.org/public-portal/

  14. The Cancer Genomics Hub (CGHub). https://cghub.ucsc.edu/

  15. The Tumor Portal. http://cancergenome.broadinstitute.org/

  16. Griffith M, Griffith OL, Coffman AC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10:1209–1210

    Article  CAS  PubMed  Google Scholar 

  17. The Drug Gene Interaction Database. http://dgidb.genome.wustl.edu/

  18. The Genomics of Drug Sensitivity in Cancer (GDSC). http://www.cancerrxgene.org/

  19. Brownstein CA, Beggs AH, Homer N et al (2014) An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biol 15:R53

    Article  PubMed Central  PubMed  Google Scholar 

  20. Stahel R, Bogaerts J, Ciardiello F, de Ruysscher D et al. (2014) Optimising translational oncology in clinical practice: strategies to accelerate progress in drug development. Cancer Treat Rev. pii: S0305-7372 (14) 00209-6

    Google Scholar 

  21. Watson IBM. http://www.ibm.com/smarterplanet/us/en/ibmwatson/20

  22. Ferrucci D, Brown E, Chu-Carroll J et al (2010) Building Watson: an overview of the DeepQA project. AI Mag 31:59–79

    Google Scholar 

  23. Moschitti A, Chu-Carroll J, Patwardhan S et al. (2011) Using syntactic and semantic structural kernels for classifying definition questions in jeopardy!. Proceedings of the conference on empirical methods in natural language processing. pp 712–724

    Google Scholar 

  24. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes Gatekeepers and caretakers. Nature 386:761–763

    Article  CAS  PubMed  Google Scholar 

  25. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  26. Marx V (2014) Cancer genomes: discerning drivers from passengers. Nat Methods 11:375–379

    Article  CAS  Google Scholar 

  27. Lawrence MS, Lawrence MS, Stojanov P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lawrence MS, Stojanov P, Mermel CH et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J et al (2013) IntOGen-mutations identifies cancer drivers across tumor types. Nat Methods 10:1081–1082

    Article  CAS  PubMed  Google Scholar 

  30. IntOGen-mutations platform. http://www.intogen.org/mutations/

  31. Martelotto LG, Ng C, De Filippo MR et al (2014) Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations. Genome Biol 15:484

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yeang CH, McCormick F, Levine A (2008) Combinatorial patterns of somatic gene mutations in cancer. FASEB J 22:2605–2622

    Article  CAS  PubMed  Google Scholar 

  33. Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457

    Article  CAS  PubMed  Google Scholar 

  36. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  37. Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394

    Article  CAS  PubMed  Google Scholar 

  38. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  40. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

    Article  PubMed  Google Scholar 

  41. Grothey A, Lenz HJ (2012) Explaining the unexplainable: EGFR antibodies in colorectal cancer. J Clin Oncol 30:1735–1737

    Article  CAS  PubMed  Google Scholar 

  42. Samalin E, Bouché O, Thézenas S et al (2014) Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial. Br J Cancer 110:1148–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28:1779–1802

    Article  CAS  PubMed  Google Scholar 

  44. Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    Article  CAS  PubMed  Google Scholar 

  45. Sun C, Hobor S, Bertotti A et al (2014) Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep 7:86–93

    Article  CAS  PubMed  Google Scholar 

  46. Ng K, Tabernero J, Hwang J et al (2013) Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res 19:3987–3995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Iyer G, Hanrahan AJ, Milowsky MI et al (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Integrating personalised medicine into EU strategy. EAPM annual conference report Bibliothéque Solvay and the European Parliament, Brussels 9–10 September, 2014. http://euapm.eu/wp-content/uploads/2012/07/EAPM-Annual-Conf-Report-Integrating-Personalised-Medicine-into-the-EU-Health-Strategy.pdf

  49. Pal I, Mandal M (2012) PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 33:1441–1458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhao Y, Aguilar A, Bernard D et al (2015) (2014) Small-molecule inhibitors of the MDM2–p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment. J Med Chem 8(3):1038–52

    Article  Google Scholar 

  51. Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620

    Article  CAS  PubMed  Google Scholar 

  52. FDA Public Workshop. Innovations in breast cancer drug development – next generation oncology trials. Breast Cancer Workshop. October 21, 2014. Session 1 improving targeted drug development for “small” populations with genomic. http://www.fda.gov/Drugs/NewsEvents/ucm410332.htm

  53. Lillie EO, Patay B, Diamant J et al (2011) The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per Med 8:161–173

    Article  PubMed Central  PubMed  Google Scholar 

  54. Zauderer MG, Gucalp A, Epstein AS et al (2014) Piloting IBM Watson Oncology within Memorial Sloan Kettering’s regional network. Journal of Clinical Oncology 32(15 suppl):e17653, 2014 ASCO Annual Meeting Abstracts

    Google Scholar 

  55. Rodin M. IBM Watson: Transforming expertise in the new era of computing. Presented at Mayo Clinic Transform 2014, Washington, DC/San Francisco, Sept 7–9, 2014. www.mayo.edu/transform/talks/2014/ibm-watson-transforming-expertise-in-the-new-era-of-computing

  56. ClinicalTrials.gov. https://clinicaltrials.gov/

  57. Crystal AS, Shaw AT, Sequist LV et al (2014) Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cancer Cell Line Encyclopedia. http://www.broadinstitute.org/ccle/home

  59. Zauderer MG, Gucalp A, Epstein AS, Seidman AD, Caroline A, Granovsky S, Julia F, Keesing J, Lewis S, Co H, Petri J, Megerian M, Eggebraaten T, Bach P, Kris MG, Tortolina L, Duffy DJ, Maffei M et al (2015) Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies. Oncotarget 10:5041–5058

    Google Scholar 

  60. Castagnino N, Tortolina L, Balbi A et al (2010) Dynamic simulations of pathways downstream of ERBB-family, including mutations and treatments. Concordance with experimental results. Curr Cancer Drug Targets 10:737–757

    Article  CAS  PubMed  Google Scholar 

  61. Tortolina L, Castagnino N, De Ambrosi C et al (2012) A multi-scale approach to colorectal cancer: from a biochemical-interaction signaling-network level, to multi-cellular dynamics of malignant transformation. Interplay with mutations and onco-protein inhibitor drugs. Curr Cancer Drug Targets 12:339–355

    Article  CAS  PubMed  Google Scholar 

  62. De Ambrosi C, Barla A, Tortolina L et al (2013) Parameter space exploration within dynamic simulations of signaling networks. Math Biosci Eng 10:103–120

    Article  PubMed  Google Scholar 

  63. Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10:2703–2734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Aladjem M.I., Pasa S., Parodi S. et al. (2004) Molecular interaction maps--a diagrammatic graphical language for bioregulatory networks. Sci STKE 2004(222):pe8.

    Google Scholar 

  65. Kohn KW, Aladjem MI, Weinstein JN et al (2006) Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol Biol Cell 17:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. MATLAB. http://www.mathworks.com/products/simbiology/?BB=1

  67. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Tay Y, Kats L, Salmena L et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296

    CAS  PubMed  Google Scholar 

  70. Snedecor GW, Cochran WG (1967) Statistical methods 1967. Blackwell, Ames, IA

    Google Scholar 

  71. Statistical inference. http://en.wikipedia.org/wiki/Statistical_inference

  72. Misale S, Arena S, Lamba S et al (2014) Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med 6(224):224ra26

    Article  PubMed  Google Scholar 

  73. Cell Miner. http://discover.nci.nih.gov/cellminer/home.do

  74. The I-SPY 2 TRIAL – Investigation of serial studies to predict your therapeutic response with imaging and molecular analysis 2. http://ispy2.org/

  75. The NCI Molecular Analysis for Therapy Choice (MATCH) program. http://www.cancer.gov/clinicaltrials/noteworthy-trials/match

  76. SAFIR02_Breast. https://clinicaltrials.gov/ct2/show/NCT02299999?term=Safir02&rank=2

  77. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795

    Article  CAS  PubMed  Google Scholar 

  78. Blanpain C (2013) Tracing the cellular origin of cancer. Nat Cell Biol 15:126–134

    Article  CAS  PubMed  Google Scholar 

  79. Schmitz U, Wolkenhauer O (eds) (2016) Systems medicine methods and protocols: methods in molecular biology, vol 1386. Springer, New York

    Google Scholar 

  80. Russell S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  81. McCarthy J (1963) Programming with common sense. Defense Technical Information Center, Washington, DC

    Google Scholar 

  82. Shortliffe EH (1974) MYCIN: a rule based computer program for advising physicians regarding antimicrobial therapy selection. PhD dissertation in Medical Information Sciences. Stanford University

    Google Scholar 

  83. Rabiner L (1989) A tutorial on hidden Markov Models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  84. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  85. Jurafsky D, James H (2000) Speech and language processing an introduction to natural language processing, computational linguistics, and speech. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  86. Gokhan T, De Mori R (2011) Spoken language understanding: systems for extracting semantic information from speech. John Wiley, New York

    Google Scholar 

  87. Narayanan S, Panayiotis GG (2013) Behavioral signal processing: deriving human behavioral informatics from speech and language. Proc IEEE 101:1203–1233

    Article  Google Scholar 

  88. Mayo Clinic partners with IBM’s Watson to improve clinical trial patient selection. http://www.healio.com/endocrinology/practice-management/news/online/%7B193f1642-342d-492f-9be3-0e447becbf02%7D/mayo-clinic-partners-with-ibms-watson-to-improve-clinical-trial-patient-selection

  89. Sledge GW Jr, Miller RS, Hauser R (2013) CancerLinQ and the future of cancer care. Am Soc Clin Oncol Educ Book. pp 430-434

    Google Scholar 

  90. Schilsky RL, Michels DL, Kearbey AH et al (2014) Building a rapid learning health care system for oncology: the regulatory framework of CancerLinQ. J Clin Oncol 32:2373–2379

    Article  PubMed  Google Scholar 

  91. Merolla PA, Arthur JV, Alvarez-Icaza R et al (2014) Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Economic Development “Industry 2015—Made in Italy” (MI01_00424) (A.B., F.P., S.P.) (2011–2014); Compagnia di San Paolo (1471 SD/CC N.2009.1822) (2011–2013) (2013.0927 ID ROL 4195); fellowship to M. M., Carige Foundation (2012); Start-Up grant AIRC #6108, Italian Ministry of Health grant GR-2008-1135635 (G.Z.); and FP7 project PANACREAS #256986 (A.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Parodi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parodi, S. et al. (2016). Systems Medicine in Oncology: Signaling Network Modeling and New-Generation Decision-Support Systems. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics