Skip to main content

How to Compare, Analyze, and Morph Between Crystal Structures of Different Conformations: The P-Type ATPase Example

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

In the past 15 years, a large body of structural information on P-type ATPases has accumulated in the Protein Data Bank. The available crystal structures cover different enzymes in a variety of conformational states that are associated with the enzymatic activity of ATP-dependent ion translocation across membranes. This chapter provides an overview about the available structural information, along with some practical instructions on how to make meaningful comparisons of structures in different conformations, and how to generate morphs between series of structures, in order to analyze domain movements and structural flexibility.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  2. Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20(431–9)

    Google Scholar 

  3. Møller JV, Olesen C, Winther A-ML, Nissen P (2010) The sarcoplasmic Ca2 + -ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43(501–66)

    Google Scholar 

  4. Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5(282–95)

    Google Scholar 

  5. Toyoshima C et al (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2 + -bound E1 state. Nature 495(260–4)

    Google Scholar 

  6. Winther A-ML et al (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495(265–9)

    Google Scholar 

  7. Jensen A-ML, Sørensen TL-M, Olesen C, Møller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25(2305–2314)

    Google Scholar 

  8. Clausen JD et al (2013) SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. EMBO J 32(3231–43)

    Google Scholar 

  9. Toyoshima C, Yonekura S-I, Tsueda J, Iwasawa S (2011) Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2 + -ATPase in the absence of Ca2+. Proc Natl Acad Sci U S A 108(1833–1838)

    Google Scholar 

  10. Bublitz M et al (2013) Ion pathways in the sarcoplasmic reticulum Ca2 + -ATPase. J Biol Chem 288(10759–65)

    Google Scholar 

  11. Sørensen TL-M, Møller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304(1672–5)

    Google Scholar 

  12. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432(361–8)

    Google Scholar 

  13. Olesen C et al (2007) The structural basis of calcium transport by the calcium pump. Nature 450(1036–1042)

    Google Scholar 

  14. Takahashi M, Kondou Y, Toyoshima C (2007) Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc Natl Acad Sci U S A 104(5800–5805)

    Google Scholar 

  15. Olesen C, Sørensen TL-M, Nielsen RC, Møller JV, Nissen P (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306(2251–2255)

    Google Scholar 

  16. Laursen M et al (2009) Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2 + -ATPase. J Biol Chem 284(13513–8)

    Google Scholar 

  17. Moncoq K, Trieber CA, Young HS (2007) The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282(9748–9757)

    Google Scholar 

  18. Obara K et al (2005) Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+). Proc Natl Acad Sci U S A 102:14489–14496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Drachmann ND et al (2014) Comparing crystal structures of Ca(2+)-ATPase in the presence of different lipids. FEBS J 281(18):4249–4262

    Google Scholar 

  20. Winther AML et al (2010) Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2 + -ATPase with thapsigargin and thapsigargin analogs. J Biol Chem 285:28883–28892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418(605–611)

    Google Scholar 

  22. Sonntag Y et al (2011) Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nat Commun 2(304)

    Google Scholar 

  23. Paulsen ES et al (2013) Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase. J Med Chem 56(3609–19)

    Google Scholar 

  24. Søhoel H et al (2006) Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med Chem 14:2810–2815

    Article  PubMed  Google Scholar 

  25. Sacchetto R et al (2012) Crystal structure of sarcoplasmic reticulum Ca2 + -ATPase (SERCA) from bovine muscle. J Struct Biol 178:38–44

    Article  PubMed  CAS  Google Scholar 

  26. Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na + -bound Na+, K + -ATPase preceding the E1P state. Nature 502(201–6)

    Google Scholar 

  27. Nyblom M et al (2013) Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state. Science 342(123–7)

    Google Scholar 

  28. Laursen M, Gregersen JL, Yatime L, Nissen P, Fedosova NU (2015) Structures and characterization of digoxin- and bufalin-bound Na+, K + -ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci U S A 112(1755–60)

    Google Scholar 

  29. Yatime L et al (2011) Structural insights into the high affinity binding of cardiotonic steroids to the Na+, K + -ATPase. J Struct Biol 174:296–306

    Article  PubMed  CAS  Google Scholar 

  30. Morth JP et al (2007) Crystal structure of the sodium-potassium pump. Nature 450(1043–1049)

    Google Scholar 

  31. Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 459:446–450

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa H, Shinoda T, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump (Na+, K + -ATPase) with bound potassium and ouabain. Proc Natl Acad Sci 106:13742–13747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450(1111–4)

    Google Scholar 

  34. Andersson M et al (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21(43–8)

    Google Scholar 

  35. Gourdon P et al (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475(59–64)

    Google Scholar 

  36. Wang K et al (2014) Structure and mechanism of Zn(2+)-transporting P-type ATPases. Nature 514(7523):518–522

    Google Scholar 

  37. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper L. Karlsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Karlsen, J.L., Bublitz, M. (2016). How to Compare, Analyze, and Morph Between Crystal Structures of Different Conformations: The P-Type ATPase Example. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_43

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics