Skip to main content

Nanomaterials for Treating Ocular Diseases

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1927 Accesses

Abstract

Over 5 % of the world population is visually impaired. Despite extensive advances in ocular drug R&D, intraocular drug delivery remains a daunting challenge, by virtue of the unique anatomy and physiology of the eye. In recent years, the development of nanomaterial-based drug delivery systems has opened up new avenues for treating ocular diseases. This chapter provides a summary of the ocular barriers that restrict drug delivery, some of the recent nanomaterial-based drug delivery studies, their advantages and toxicity, and future implications of using nanoparticle-based drug delivery for ocular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96(5):614–618. doi:10.1136/bjophthalmol-2011-300539

    Article  PubMed  Google Scholar 

  2. NORC at the University of Chicago (2013) Cost of vision problems: the economic burden of vision loss and eye disorders in the United States. Prepared for Prevent Blindness America, Chicago, IL. http://costofvision.preventblindness.org [database on the Internet]2013

  3. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135. doi:10.1016/j.addr.2006.07.027

    Article  CAS  PubMed  Google Scholar 

  4. Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36(1):49–62. doi:10.1177/0192623307310955

    Article  CAS  PubMed  Google Scholar 

  5. Davis JL, Gilger BC, Robinson MR (2004) Novel approaches to ocular drug delivery. Curr Opin Mol Ther 6(2):195–205

    CAS  PubMed  Google Scholar 

  6. Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y (2006) Drug delivery from ocular implants. Expert Opin Drug Deliv 3(2):261–273. doi:10.1517/17425247.3.2.261

    Article  CAS  PubMed  Google Scholar 

  7. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12(3):348–360. doi:10.1208/s12248-010-9183-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13(3-4):135–143. doi:10.1016/j.drudis.2007.11.002

    Article  PubMed  Google Scholar 

  9. Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12(5):608–620. doi:10.1002/mabi.201100419

    Article  CAS  PubMed  Google Scholar 

  10. Mudgil M, Gupta N, Nagpal M, Pawar P (2012) Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci 4(2):105–112

    Google Scholar 

  11. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136(1):2–13. doi:10.1016/j.jconrel.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  12. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15(23):2724–2750

    Article  CAS  PubMed  Google Scholar 

  13. Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 150(2):144–162. doi:10.1016/j.ajo.2010.03.019, e2

    Article  CAS  PubMed  Google Scholar 

  14. Tong YC, Chang SF, Liu CY, Kao WW, Huang CH, Liaw J (2007) Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med 9(11):956–966. doi:10.1002/jgm.1093

    Article  CAS  PubMed  Google Scholar 

  15. Wu X, Yu G, Luo C, Maeda A, Zhang N, Sun D et al (2014) Synthesis and evaluation of a nanoglobular dendrimer 5-aminosalicylic Acid conjugate with a hydrolyzable schiff base spacer for treating retinal degeneration. ACS Nano 8(1):153–161. doi:10.1021/nn4054107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16(5-6):270–277. doi:10.1016/j.drudis.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  17. Kaur IP, Kakkar S (2014) Nanotherapy for posterior eye diseases. J Control Release 193:100–112. doi:10.1016/j.jconrel.2014.05.031

    Article  CAS  PubMed  Google Scholar 

  18. Alward WL (2003) Biomedicine. A new angle on ocular development. Science 299(5612):1527–1528. doi:10.1126/science.1082933

    Article  CAS  PubMed  Google Scholar 

  19. Clark AF, Yorio T (2003) Ophthalmic drug discovery. Nat Rev Drug Discov 2(6):448–459. doi:10.1038/nrd1106

    Article  CAS  PubMed  Google Scholar 

  20. Nagai N, Ito Y (2014) A new preparation method for ophthalmic drug nanoparticles. Pharm Anal Acta. 5(7):305. doi: 10.4172/2153-2435.1000305

  21. Urtti A, Pipkin JD, Rork G, Sendo T, Finne U, Repta AJ (1990) Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int J Pharm 61(3):241–249, doi: http://dx.doi.org/10.1016/0378-5173(90)90215-P

    Article  CAS  Google Scholar 

  22. Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears M (ed) Pharmacology of the eye. Handbook of experimental pharmacology. Springer, Berlin, pp 19–116

    Google Scholar 

  23. Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F et al (2006) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58(11):1182–1202. doi:10.1016/j.addr.2006.07.026

    Article  CAS  PubMed  Google Scholar 

  24. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. doi:10.1038/sj.clpt.6100400

    Article  CAS  PubMed  Google Scholar 

  26. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  CAS  PubMed  Google Scholar 

  27. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM et al (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5(4):410–418. doi:10.1016/j.nano.2009.02.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang X, Li J, Wang Y, Cho KJ, Kim G, Gjyrezi A et al (2009) HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3(10):3165–3174. doi:10.1021/nn900649v

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bangham AD, Standish MM, Weissmann G (1965) The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13(1):253–259

    Article  CAS  PubMed  Google Scholar 

  30. Kopf H, Joshi RK, Soliva M, Speiser P (1976) Study on micelle polymerization in the presence of low-molecular-weight drugs. 1. Production and isolation of nanoparticles, residual monomer determination, physical-chemical data. Pharm Ind 38:281–284

    CAS  Google Scholar 

  31. Adler-moore JP, Proffitt RT (1993) Development, characterization, efficacy and mode of action of Am Bisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res 3(3):429–450. doi:10.3109/08982109309150729

    Article  CAS  Google Scholar 

  32. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64. doi:10.1016/j.urolonc.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  33. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Murday JS, Siegel RW, Stein J, Wright JF (2009) Translational nanomedicine: status assessment and opportunities. Nanomedicine 5(3):251–273. doi:10.1016/j.nano.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  35. Vauthier C, Couvreur P, Fattal E (2012) Nanomaterials: applications in drug delivery. In: Brayner R, Fiévet F, Coradin T (eds) Nanomaterials: a danger or a promise?: A chemical and biological perspective. Springer, London, pp 131–151

    Google Scholar 

  36. FDA (2002) Guidance for industry, liposome drug products chemistry, manufacturing, and controls; human, pharmacokinetics and bioavailability; and labeling documentation. J:\!GUIDANC\2191dft.doc, 07/29/02. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070570.pdf. Accessed 8 Aug 2014

  37. Adair JH, Parette MP, Altinoglu EI, Kester M (2010) Nanoparticulate alternatives for drug delivery. ACS Nano 4(9):4967–4970. doi:10.1021/nn102324e

    Article  CAS  PubMed  Google Scholar 

  38. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  39. Zhang K, Zhang L, Weinreb RN (2012) Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 11(7):541–559. doi:10.1038/nrd3745

    Article  CAS  PubMed  Google Scholar 

  40. Sultana Y, Maurya DP, Iqbal Z, Aqil M (2011) Nanotechnology in ocular delivery: current and future directions. Drugs Today (Barc) 47(6):441–455. doi:10.1358/dot.2011.47.6.1549023

    Article  CAS  Google Scholar 

  41. Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery – a potential approach for ocular therapy? J Pharm Pharmacol 66(4):542–556. doi:10.1111/jphp.12104

    Article  CAS  PubMed  Google Scholar 

  42. Vadlapudi AD, Mitra AK (2013) Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv 4(1):1–3. doi:10.4155/tde.12.122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151. doi:10.1016/j.drudis.2007.10.021

    Article  CAS  PubMed  Google Scholar 

  44. Gupta N, Goel S, Gupta H (2013) Patent review on nanotechnology in ocular drug delivery. Recent Pat Nanomed 3(1):37–46. doi:10.2174/18779123112029990004

    Article  CAS  Google Scholar 

  45. Pignatello R, Puglisi G (2011) Nanotechnology in ophthalmic drug delivery: a survey of recent developments and patenting activity. Recent Pat Nanomed 1(1):42–54. doi:10.2174/1877912311101010042

    Article  CAS  Google Scholar 

  46. Puntel A, Maeda A, Golczak M, Gao S-Q, Yu G, Palczewski K et al (2015) Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials 44:103–110, doi: http://dx.doi.org/10.1016/j.biomaterials.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  47. Palczewski K (2010) Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 31(6):284–295. doi:10.1016/j.tips.2010.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 5:1057–1065. doi:10.2147/IJN.S14912

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Giannaccini M, Giannini M, Calatayud MP, Goya GF, Cuschieri A, Dente L et al (2014) Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE). Int J Mol Sci 15(1):1590–1605. doi:10.3390/ijms15011590

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J (2013) Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14(9):17501–17510. doi:10.3390/ijms140917501

    Article  PubMed Central  PubMed  Google Scholar 

  51. Misra RD (2008) Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater Sci Technol 24(9):1011–1019. doi:10.1179/174328408X341690

    Article  CAS  Google Scholar 

  52. Tuomela A, Liu P, Puranen J, Ronkko S, Laaksonen T, Kalesnykas G et al (2014) Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm 467(1-2):34–41. doi:10.1016/j.ijpharm.2014.03.048

    Article  CAS  PubMed  Google Scholar 

  53. Nagarwal RC, Kumar R, Dhanawat M, Das N, Pandit JK (2011) Nanocrystal technology in the delivery of poorly soluble drugs: an overview. Curr Drug Deliv 8(4):398–406

    Article  CAS  PubMed  Google Scholar 

  54. Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, Gottfredsdottir MS, Hardarson SH, Johannesson G et al (2014) γ-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther 30(1):35–41. doi:10.1089/jop.2013.0060

    Article  CAS  PubMed  Google Scholar 

  55. Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63(9):1119–1135. doi:10.1111/j.2042-7158.2011.01279.x

    Article  CAS  PubMed  Google Scholar 

  56. Apaolaza PS, Delgado D, del Pozo-Rodriguez A, Gascon AR, Solinis MA (2014) A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm 465(1-2):413–426. doi:10.1016/j.ijpharm.2014.02.038

    Article  CAS  PubMed  Google Scholar 

  57. Kalita D, Shome D, Jain VG, Chadha K, Bellare JR (2014) In vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. Am J Ophthalmol 157(5):1109–1115. doi:10.1016/j.ajo.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  58. Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150. doi:10.4103/0975-7406.130965

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kaneshiro TL, Wang X, Lu ZR (2007) Synthesis, characterization, and gene delivery of poly-l-lysine octa(3-aminopropyl)silsesquioxane dendrimers: nanoglobular drug carriers with precisely defined molecular architectures. Mol Pharm 4(5):759–768. doi:10.1021/mp070036z

    Article  CAS  PubMed  Google Scholar 

  60. Kaneshiro TL, Jeong EK, Morrell G, Parker DL, Lu ZR (2008) Synthesis and evaluation of globular Gd-DOTA-monoamide conjugates with precisely controlled nanosizes for magnetic resonance angiography. Biomacromolecules 9(10):2742–2748. doi:10.1021/bm800486c

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I et al (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22(8):977–984. doi:10.1038/nbt995

    Article  CAS  PubMed  Google Scholar 

  62. Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38. doi:10.1016/j.jconrel.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  63. Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y et al (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038. doi:10.1016/j.ejmech.2006.12.035

    Article  CAS  PubMed  Google Scholar 

  64. Carnahan MA, Middleton C, Kim J, Kim T, Grinstaff MW (2002) Hybrid dendritic-linear polyester-ethers for in situ photopolymerization. J Am Chem Soc 124(19):5291–5293

    Article  CAS  PubMed  Google Scholar 

  65. Nishiyama N, Iriyama A, Jang WD, Miyata K, Itaka K, Inoue Y et al (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater 4(12):934–941. doi:10.1038/nmat1524

    Article  CAS  PubMed  Google Scholar 

  66. Parekh HS, Marano RJ, Rakoczy EP, Blanchfield J, Toth I (2006) Synthesis of a library of polycationic lipid core dendrimers and their evaluation in the delivery of an oligonucleotide with hVEGF inhibition. Bioorg Med Chem 14(14):4775–4780. doi:10.1016/j.bmc.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  67. Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP et al (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45(1):326–334. doi:10.1016/j.ejmech.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  68. Xu Q, Kambhampati SP, Kannan RM (2013) Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 20(1):26–37. doi:10.4103/0974-9233.106384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kopečková P, Ikesue K, Kopeček J (1992) Cleavage of oligopeptide p-nitroanilides attached to N-(2-hydroxypropyl)methacrylamide copolymers by guinea pig intestinal enzymes. Macromol Chem Phys 193(10):2605–2619. doi:10.1002/macp.1992.021931010

    Article  Google Scholar 

  70. Heizmann J, Langguth P, Biber A, Oschmann R, Merkle HP, Wolffram S (1996) Enzymatic cleavage of thymopoietin oligopeptides by pancreatic and intestinal brush-border enzymes. Peptides 17(7):1083–1089

    Article  CAS  PubMed  Google Scholar 

  71. Yu G, Wu X, Ayat N, Maeda A, Gao SQ, Golczak M et al (2014) Multifunctional PEG retinylamine conjugate provides prolonged protection against retinal degeneration in mice. Biomacromolecules 15(12):4570–4578. doi:10.1021/bm501352s

    Article  CAS  PubMed  Google Scholar 

  72. Volotinen M, Maenpaa J, Kautiainen H, Tolonen A, Uusitalo J, Ropo A et al (2009) Ophthalmic timolol in a hydrogel vehicle leads to minor inter-individual variation in timolol concentration in aqueous humor. Eur J Pharm Sci 36(2-3):292–296. doi:10.1016/j.ejps.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  73. Lou J, Hu W, Tian R, Zhang H, Jia Y, Zhang J et al (2014) Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine 9:2517–2525. doi:10.2147/ijn.s60270

    PubMed Central  PubMed  Google Scholar 

  74. Eljarrat-Binstock E, Orucov F, Aldouby Y, Frucht-Pery J, Domb AJ (2008) Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release 126(2):156–161. doi:10.1016/j.jconrel.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  75. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ (2008) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24(3):344–350. doi:10.1089/jop.2007.0097

    Article  CAS  PubMed  Google Scholar 

  76. Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110(3):479–489. doi:10.1016/j.jconrel.2005.09.049

    Article  CAS  PubMed  Google Scholar 

  77. Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19(2):145–151. doi:10.1089/108076803321637672

    Article  CAS  PubMed  Google Scholar 

  78. Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3(1):193–221

    Article  CAS  Google Scholar 

  79. Cardillo JA, Souza-Filho AA, Oliveira AG (2006) Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulness for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81(12):675–677

    Article  CAS  PubMed  Google Scholar 

  80. Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M et al (2010) In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 35(12):1081–1089. doi:10.3109/02713683.2010.508867

    Article  CAS  PubMed  Google Scholar 

  81. Pepić I, Hafner A, Lovrić J, Pirkić B, Filipović-Grčić J (2010) A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci 99(10):4317–4325. doi:10.1002/jps.22137

    Article  PubMed  Google Scholar 

  82. Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Moller M (2011) Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416(2):515–524. doi:10.1016/j.ijpharm.2011.01.004

    Article  PubMed  Google Scholar 

  83. Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG (2009) Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378(1–2):177–186. doi:10.1016/j.ijpharm.2009.05.028

    Article  CAS  PubMed  Google Scholar 

  84. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces 81(2):412–421, doi: http://dx.doi.org/10.1016/j.colsurfb.2010.07.029

    Article  CAS  PubMed  Google Scholar 

  85. Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16(1):44–56. doi:10.3109/10837450903479988

    Article  CAS  PubMed  Google Scholar 

  86. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol 88(8):901–904. doi:10.1111/j.1755-3768.2009.01584.x

    Article  CAS  PubMed  Google Scholar 

  87. Mehanna MM, Elmaradny HA, Samaha MW (2010) Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 36(1):108–118. doi:10.3109/03639040903099751

    Article  CAS  PubMed  Google Scholar 

  88. Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 29(5):699–703. doi:10.1097/IAE.0b013e3181a2f42a

    Article  PubMed  Google Scholar 

  89. Gudmundsdottir E, Stefansson E, Bjarnadottir G, Sigurjonsdottir JF, Gudmundsdottir G, Masson M et al (2000) Methazolamide 1 % in cyclodextrin solution lowers IOP in human ocular hypertension. Invest Ophthalmol Vis Sci 41(11):3552–3554

    CAS  PubMed  Google Scholar 

  90. Gonzalez JR, Baiza-Duran L, Quintana-Hau J, Tornero-Montano R, Castaneda-Hernandez G, Ortiz M et al (2007) Comparison of the stability, efficacy, and adverse effect profile of the innovator 0.005 % latanoprost ophthalmic solution and a novel cyclodextrin-containing formulation. J Clin Pharmacol 47(1):121–126. doi:10.1177/0091270006292626

    Article  CAS  PubMed  Google Scholar 

  91. Bawa R (2009) NanoBiotech 2008: exploring global advances in nanomedicine. Nanomedicine 5(1):5–7

    Article  CAS  PubMed  Google Scholar 

  92. Gaspar R (2007) Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine (Lond) 2(2):143–147. doi:10.2217/17435889.2.2.143

    Article  CAS  Google Scholar 

  93. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. doi:10.1038/sj.bjp.0707130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29(6):596–609. doi:10.1016/j.preteyeres.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  95. Prow TW (2010) Toxicity of nanomaterials to the eye. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 2(4):317–333. doi:10.1002/wnan.65

    Article  CAS  Google Scholar 

  96. Weiner AL, Gilger BC (2010) Advancements in ocular drug delivery. Vet Ophthalmol 13(6):395–406. doi:10.1111/j.1463-5224.2010.00835.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Rong Lu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yu, G., Vaidya, A., Sun, D., Lu, ZR. (2016). Nanomaterials for Treating Ocular Diseases. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics